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Thin Films Flow Driven on an Inclined Surface
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ABSTRACT

The flow of unsteady incompressible two dimensional system flow of a thin
liquid films with negligible inertia is investigated. Continuity equation and Navier-
Stokes equations are used to obtain the equation that governs this type of flow.
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Introduction:

The flow of thin films of fluids is encountered in many engineering and
biological applications. They include; the flow of rainwater on a road, windscreen or
other draining problem [3], paint and coating flow [6, 1]. The flow of many protective
biological fluids [5], and other coating are paint and dry processes [4, 7, 8]. The fluid
film thickness and the average fluid flux are the main characteristics of interest in these
applications [9]. Bascom, Cottington, and Singleterry [10] reported experimental
observations of contact lines of thin liquid films. Emilia Borsa had studied the flow of a
thin layer on a horizontal plate in the lubrication approximation[2]. The objective here is
to obtain the equation governing the flow in thin liquid films, and to find the thickness
of the film.

Governing Equations:

We consider a two-dimensional thin film flow on an inclined plane at angle a.
The x-axis is oriented stream wise along the plane. The y-axis is perpendicular to the
plane in the film thickness direction with the origin at the liquid plane interface. The
flow is considered to be a laminar incompressible Newtonian fluid with constant density
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p and constant viscosity u, and governed by the Navier-Stokes equations and continuity
equation as:

8_u+u@+va_u _—@-F @+@ + 09 (1)
Ao “ax ay)T ax Mo ey )P
@+u@+v@ ——@+ 6_2\/+a_2v + 9 (2)
Ao "o o) oy Ml )T
6_u+@:o ...(3)
ox oy
In the thin film lubrication approximation the Navier-Stokes equations read
o
0=- —+ sin ...(4
~ uay pgsin(e) )
op
0=-—"-— pgcos(a) ..(3)
oy

Where g is gravitational acceleration, y=h(x,y) is the free surface, p is the
pressure in the fluid , u and p depended on X=(x,y,t), and t is the time.

To complete the problem formulation, the lubrication equations (3), (4) and (5)
require the boundary conditions:

u=0 on y=0 ...(6)
ou
T=u— on y=h ~.(7)
oy
p=p, on y=h ...(8)
Where p, is the atmospheric pressure in the air face.
oh oh
V=—+U— on y=h .9
ot OX Y ©

Where the boundary conditions (6), (7), (8) and (9) represent the no-slip
condition ,the balance of tangential stress, the balance of normal stress and the
kinematics condition respectively.

Integrating (4) with respect to y and using the boundary condition (7) we have:

ou op op
H— =— sinlfe)y+7——h+ pgsin(a)n ...(10
ayaypg()yrapg() (10)
Similarly integrating (10) with respect to y and using boundary condition (6) we
get :
1op , 7 o9 . , 10p o9 .
U=——Yy +—y—-—3in ———hy+=sin(a)h (11
rn o’ Y o (@)y Mt (@)hy (11)
Now, integrating (5) with respect to y and using the boundary condition (8) we
obtain :
p =—pg cos(a)y + p, + pg cos(a)n ..(12)
Drive(12) with respect to x and substitution in to(11) we have:
u =@cos(a)@ y2—sin(a)y? + l—ﬂcos(a)a—hh+ﬂsin(a)h y ...(13)
24 X U uou ox  u

By using the continuity equation in the thin film approximation and the
kinematics boundary condition leads the evolution equation for y = h(x,t)
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2 cos(a )a(rﬁ ahj 39 sin(a) My =, TNy, (14
2u OX oX) 2u OX ot uox
We introduce the following nondimensional variables defined by:
hol X M Lr .(15)
h, L hO o

Where the velocity U and the length scale L are characteristic quantities of the
problem, assume that d=ho/L, where ho is the characteristic length for the film
thickness.

Then, convert the equation (14) into no dimensional form in terms of the no
dimensional variables h™, x7, t*, t and the equation (14) becomes

Bocos(a )a h36r_] =a—r]+§sin( )kh2@+Ca h@ ...(16)
ox) ot 2 OX

2
Where Bo=5* 2 casgr O s
3uU y7.8; y7.v;
For the sake of simpler notation, we drop the "dash" from the non dimensional
variables h™, X, t", T in the equation (16) and we take the unsteady flow the equation

(16) and divided on Bocos(c), we get:

i[h3a—hj:§H tan(a)h28—h+M sec(a)rha—h ...(17)
dx ox) 2 OX OX
where H= LS , M= ca
Bo Bo
Integrating (17) with respect to x and divide on h*® we obtain:
oh 3 1 A
—=—Htan(a )+ M sec —+— ...(18

Where A is constant.
Now, we take two cases:
The first case when A=0 and ¢ =0 the equation (18) becomes

oh 3

—=—Htan ...(19

=5 Hanl@) (19)a
Integrating (19)a with respect to x we have:

h(x)= g H tan(o)x + f ...(20)a

f is constant.
By giving different value to the constant f, and angle a, we get the thick the
film.
The second case when A#0 and 1=0, the equation (18) becomes:

oh 3 A

—=—Htanla)+— ...(19)b

ox 2 (@) h® (19)
Now, to get the initial condition for the equation (19)b , we suppose that

2—: =0 and the equation (19)b becomes:.

h*(x)= _-A ...(20)b

2Hm@)
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By taking cubic root the equation (26)b, we have:

..21)

Similarly by taking different value for A and o we get the thick film in another

o Table (1.1). Represent Solutions of Equation (20)a for Different «

X =30 a=41 a =49 o =60
4.0 —24.6213 1.6426 -11.6916 2.2802
3.50 —21.4187 1.5623 —10.1052 2.1201
3.00 —18.2160 1.4820 -8.5187 1.9601
2.50 —15.0133 1.4016 -6.9323 1.8001
2.00 —-11.8107 1.3213 —5.3458 1.6401
1.50 —8.6080 1.2410 —3.7594 1.4801
1.00 -5.4053 1.1607 -2.1729 1.3200
0.50 -2.2027 1.0803 —0.5865 1.1600

0 1.0000 1.0000 1.0000 1.0000

—-0.50 4.2027 0.9197 2.5865 0.8400
—-1.00 7.4053 0.8393 4.1729 0.6800
—-1.50 10.6080 0.7590 5.7594 0.5199
—-2.00 13.8107 0.6787 7.3458 0.3599
-2.50 17.0133 0.5984 8.9323 0.1999
-3.00 20.2160 0.5180 10.5187 0.0399
-3.50 23.4187 0.4377 12.1052 —-0.1201
—-4.00 26.6213 0.3574 13.6916 —-0.2802

Table (1.2). Represent Solutions of Equation (21) for Different «

(24

30

40

50

60

f

0.2137

0.3825

0.6126

1.1603
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Fig(1.1). Represent Solutions of Equation (20)a f=1, « = 30
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Fig(1.2). Represent Solutions of Equation (20)a f=1, & = 41
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Fig(1.4). Represent Solutions of Equation (20)a f=1, & = 60
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Fig(1.6). Represent Solutions of Equation (21) « = 40
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Fig(1.8). Represent Solutions of Equation (21) & =60
Conclusion:

Through our studies to the motion equation for viscous incompressible liquid,
we conclude from equation (20)a that the thickness of the film increases when we
approach the negative values of x when 0=30,49 as shown in Figures (1.1) and (1.3) and
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it will decrease towards the positive values of X, when a=41, 60 as shown in Figures
(1.2) and (1.4) and the table (1.1), this implies that the value of the angle o will affect
the thickness of the film. From equation (21), we note that the thickness of the film will
be parallel to the x-axis and it will increase according to the value of o as shown in
Figures (1.5), (1.6), (1.7) and (1.8) and the table (1.2).
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