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ABSTRACT 

The flow of unsteady incompressible two dimensional system flow of a thin 

liquid films with negligible inertia is investigated. Continuity equation and Navier-

Stokes equations are used to obtain the equation that governs this type of flow.   
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 مدفوعة على سطح مائلالالرقيقة  سطوحتدفق ال
 خضر محمد خضر 

 كلية علوم الحاسوب والرياضيات
 جامعة الموصل 

15/02/2012: قبول تاريخ  ال                            20/11/2011تاريخ الاستلام:   
 الملخص

منضغط للأغشية الرقيقة بانعدام قوى القصور   اللامستقر و  يهدف البحث إلى دراسة ميكانيكية الجريان اللا
سذذتو لإ جاجذذاد المعادلذذة التذذو -الذذتا و و ذذو نثذذام انذذا،و البعذذدد وقذذد اسذذتسدمر معادلذذة اتسذذتمرارية ومعذذادتت نذذا  ر

  حكم  هتا النوع من الجريان.
 ستو لإ -الكلمات المفتاحية :الجريان د اتغشية الرقيقةد معادتت نا  ر 

  
Introduction: 

The flow of thin films of fluids is encountered in many engineering and 

biological applications. They include; the flow of rainwater on a road, windscreen or 

other draining problem [3], paint and coating flow [6, 1]. The flow of many protective 

biological fluids [5], and other coating are paint and dry processes [4, 7, 8]. The fluid 

film thickness and the average fluid flux are the main characteristics of interest in these 

applications [9]. Bascom, Cottington, and Singleterry [10] reported experimental 

observations of contact lines of thin liquid films. Emilia Borsa had studied the flow of a 

thin layer on a horizontal plate in the lubrication approximation[2]. The objective here is 

to obtain the equation governing the flow in thin liquid films, and to find the thickness 

of the film.     
Governing Equations: 

We consider a two-dimensional thin film flow on an inclined plane at angle α. 

The x-axis is oriented stream wise along the plane. The y-axis is   perpendicular to the 

plane in the film thickness direction with the origin at the liquid plane interface. The 

flow is considered to be a laminar incompressible Newtonian fluid with constant density 
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ρ and constant viscosity  µ, and governed by the Navier-Stokes equations and continuity 

equation as:  
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In the thin film lubrication approximation the Navier-Stokes equations read 
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Where g is gravitational acceleration, y=h(x,y) is the free surface, p is the 

pressure in the fluid , u and p depended on X=(x,y,t), and  t  is the time. 

To complete the problem formulation, the lubrication equations (3), (4) and (5) 

require the boundary conditions: 

00 == yonu           …(6) 
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hyonpp == 0                 …(8) 

 Where 0p  is the atmospheric pressure in the air face.  
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Where the boundary conditions (6), (7), (8) and (9) represent the no-slip 

condition ,the balance of tangential stress, the balance of normal stress and the 

kinematics condition respectively. 

Integrating (4) with respect to y and using the boundary condition (7) we have: 
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Similarly integrating (10) with respect to y and using boundary condition (6) we 

get : 
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Now, integrating (5) with respect to y and using the boundary condition (8) we 

obtain : 
( ) ( )hgpygp  coscos 0 ++−=               …(12) 

Drive(12) with respect to x and substitution in to(11) we have:   
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By using the continuity equation in the thin film approximation and the 

kinematics boundary condition leads the evolution equation for ( )txhy ,=  
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We introduce the following nondimensional variables defined by: 
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Where the velocity U and the length scale L are characteristic quantities of the 

problem, assume that δ=ho/L, where ho is the characteristic length for the film 

thickness. 

Then, convert the equation (14) into no dimensional form in terms  of the no 

dimensional variables hˉ, xˉ, tˉ, τˉ and the equation (14) becomes 
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For the sake of simpler notation, we drop the "dash" from the non dimensional 

variables  hˉ, xˉ , tˉ , τˉ in the equation (16) and we take the unsteady flow the equation 

(16) and divided on ( )cosBo , we get:   
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Integrating (17) with respect to x and divide on 
3h  we obtain:   
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Where A is constant. 

Now, we take two cases:  

The first case when 00 == andA  the equation (18) becomes 
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Integrating (19)a with respect to x we have:                                       
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f   is constant.  

  By giving different value to the constant f, and angle α, we get the thick the 

film. 

The second case when A≠0 and  τ=0, the equation (18) becomes:         

( )
3

tan
2

3

h

A
H

x

h
+=




                 …(19)b 

Now, to get the initial condition for the equation (19)b , we suppose    that 

0=

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x
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 and the equation (19)b   becomes:. 
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By taking cubic root the equation (26)b, we have:  
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Similarly by taking different value for A and α  we get the thick  film in another 

case. 
Table (1.1). Represent Solutions of Equation (20)a for Different   

 
 

 

Table (1.2). Represent Solutions of Equation (21)  for Different   

60 50 40 30   

1.1603 0.6126 0.3825 0.2137 f 
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Fig(1.2). Represent Solutions of Equation (20)a f=1, 41=  

 

 

 

Fig(1.1).  Represent Solutions of Equation (20)a f=1, 30=  
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Fig(1.3). Represent Solutions of Equation (20)a f=1, 49=  
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Fig(1.4). Represent Solutions of Equation (20)a f=1, 60=  
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Fig(1.5). Represent Solutions of Equation (21) 30=  
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Fig(1.6). Represent Solutions of Equation (21) 40=  
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Fig(1.7). Represent Solutions of Equation (21) 50=  
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Fig(1.8). Represent Solutions of Equation (21) 60=  

 

Conclusion: 
Through our studies to the motion equation for viscous incompressible liquid, 

we conclude from equation (20)a that the thickness of the film increases when we 

approach the negative values of x when α=30,49 as shown in Figures (1.1) and (1.3) and  
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it will decrease towards the positive values of x, when α=41, 60 as shown in Figures 

(1.2) and (1.4) and the table (1.1), this implies  that the value of the angle α will affect 

the thickness of the film. From equation (21), we note that the thickness of the film will 

be parallel to the x-axis and it will  increase according to the value of α as shown in 

Figures (1.5), (1.6), (1.7) and (1.8) and the table (1.2).                              .                                                     
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