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ABSTRACT

In this paper, we study the global convergence properties of the new class of
preconditioned conjugate gradient descent algorithm, when applied to convex objective
non-linear unconstrained optimization functions.

We assume that a new inexact line search rule which is similar to the Armijo
line-search rule is used. It's an estimation formula to choose a large step-size at each
iteration and use the same formula to find the direction search. A new preconditioned
conjugate gradient direction search is used to replace the conjugate gradient descent
direction of ZIR-algorithm. Numerical results on twenty five well-know test functions
with various dimensions show that the new inexact line-search and the new
preconditioned conjugate gradient search directions are efficient for solving
unconstrained nonlinear optimization problem in many situations.

Keywords: Preconditioned CG, Unconstrained Optimization, Self-Scaling VM-update,
inexact Line-Search.
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1. Introduction
Some important global convergence result for various methods using line-search
procedures have been given [1], [4] the above mentioned line search methods are
monotone descent for unconstrained optimization [10], [11]. Non monotone line-
searches have been investigated also by many authors see [6], [9]. The Barzilai-Borwein
method [2], [8] is a non monotone descent method which is an efficient algorithm for

solving some special problem, Zirilli [12] extend the Armijo line search rule ant analyze
the global convergence of the corresponding method.
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In this paper, we extend the Armijo line-search rule so that we can design a new
inexact line search technique and we choose the search directions of AL-Bayati Self-
Scaling [3] variable metric update which based on two parameter family of rank-two
updating formulae. Numerical results show that the new algorithm which enables us to
choose large step-size at each iteration and reduce the number of functions. The new
algorithm is efficient for solving unconstrained optimization problems.

We consider the following unconstrained optimization problem of n variables,

Min f (x), xeR", ~..(1)
where f(x) is twice continuously differentiable and its gradient g is exist available. We
consider iterations of the form

X1 = X+, d, ..(2)
where d, is a search direction and «, is the step-length obtained by means of one-

dimensional search. In conjugate gradient method when the function is quadratic and
the line search is exact, another broad class of methods may be defined by the following
search direction:

d, =—H,'g, ...(3)
where H, isa non singular symmetric matrix. Important special cases are given by
H, =1 (Steepest descent direction)
H, =V*f(x,) (Newton's direction)

Variable Metric (VM) methods are also of the form (3) and in this case H, is
not only a function of x,, but depends alsoon H, ;, and X, , .

All these methods are implemented so that d, , is a descent direction, i.e.
d g <0 ..(4)
which guarantees that the function can be decreased by taking a small step along d, for
the Newton type method (3). We can ensure that d, is a descent direction by defining

H, to be positive definite.

For conjugate gradient method, obtaining descent direction is not easy and
requires a careful choice properties of line search methods and it can be studied by
measuring the goodness of the search direction and by considering the length of the
step. The quality of the angle between the steepest descent direction — g, and the search

direction. We can define:

cos{— gk’dk>:_ngdk/(”gk"'”dk”)2770 ...(5)

The length of the step is determined by the line search iteration. A strategy that
will play a central role in this paper is to set scalars s, , #, L, o >0 with:

Sy =—g{dk/(L||dk||2) , Be(0,)); oe(0,1/2).
Let «, be the larges o in {sk, i /J’Zsk,...} such that
f.— f(x +ad,)>-cag,d, ...(6)
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The inequality ensures that the function is reduced sufficiently, we will call
these relations as Armijo condition.

2. Zirlli Inexact Line-Search Algorithm (Zir):

Inexact line-search rule was implemented the following assumptions [7], [11].
(H1) The function f(x) has a lower bound on the level set

L(xo):{XG R"| f(x)— f(xo)}where X, IS given

(H2) The gradient g(x) of f(x) is Lipschitz continuous in an open convex set B that
contains L, the; i.e., there exists L such that

lax)—g(y)|<L|x-y], VxyeB .(7)
The modified Armijo line search rule as [1]:
Set scalars S,, B, L, 4 and o with s, =—gk7dk/(L||dk||2), pe(0,1),L, >0,uecl0,2)
and o (0, 1/2).

Let o, be the larges « in {sk, B, ,stk,...} such that

1
f(x, +ead,)-f, < Go{gkrdk +(Ejaﬂ”dk”2} ...(8)

2.1. Outlines of the Zir Algorithm:

The implementable inexact line search algorithm is stated as follows [12]:

Stepl: Given some parameters, o€ (0, 1/2), x,eR", (0,1, u€(0,2), L, =1
let and set K =0, ¢ is a small parameter.

Step2: If ||g,[ < & then stop. Else go to step3.

Step3: Choose d, , to satisfy the angle property (5) and set d, =—g, .

Step4: Set x,,, =X +d,, where ¢, is defined by the modified Armijo line search
rule (8).

Step5: Set V, = X%,., —%.; Y, =0,.,— 9, and L, is determined by

Ly =l ..9)

k+1 —
Vi

Step6: Set k =k +1and go to step 2.
2.2. Some Properties of the Zir Algorithm:

Theorem 2.2.1: Assume that (H1) and (H2) hold, the search direction d,
satisfies (4) and ¢, is determined by the modified Armijo line-search rule. Zir
Algorithm generates an infinite sequence {x,} with

O<L <m,.L ...(10)

where m, is appositive integer and m, <M, <o with M, being large positive constant
then

i(ﬁj <+ ..(11)

=
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for the details of the proof see [12].
Corollary 2.2.1: If the condition in theorem 2.2.1 hold then

T
nm[%ko=o .(12)
e\

In fact, Assumption (H2) can be replaced by the following weaker assumption.
(H2") the gradient g(x) of f(x) is uniformly continuous on an open convex set B that

contains L, see [9].

3. A New Proposed Preconditioned Inexact Line-Search Algorithm (New):

In this section we propose a new algorithm which implements the step-size «,

with inexact line search rule. This formula is implemented with AL-Bayati self-scaling
[3] variable metric update.

3.1. Outlines of the New Algorithm:
The outlines of the new proposed Algorithm are stated as follows:

Stepl: Given some parameters o < (0, %), Xx,eR", fe(0,1), M =10°, H, is identity

positive definite matrix and L’; =0.1. Let, £ isasmall parameter and set K =0.
Step2: If ||g, | < & then stop. Else go to step3.
Step3: Choose d, to satisfy the angle property (5) and satisfy the new search direction.

L _[Ho if k=1 03
“|-Hg +Ld,, if k>1

Step4: Set x,., =X, +,d, where ¢, is defined later by a new modified line search rule
(19), (20).
Step5: SetV, =%, — X%, , Y, =0,.,—09, and L, is determined by

L 9[ H,.Y, YkT H,.Y,

L., = ming L, - : ..(14)
M M
Step6: Update H, by H,,,, see [3]
T T
. (H _kangﬂkw a5)
k k "k Vk k
\Y H.Y,
W, =(VTH,Y, [ ek ..(16
k ( k k "k )]/ |:Vk'|'Yk YkTHkYk } ( )
YkTHkYk
= .17
Hy V.Y, (17)

Step7: If available storage is exceeded then employ a restart option either with k=n or

T T
G > Gl g, orthogonality condition is not satisfy see [7].
Steps: Set k =k +1 and go to step2.
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3.2. Some Theoretical Properties of the New Algorithm:

We analyze the global convergence of the proposed new inexact line-search
algorithm. For the proof of convergence we adopt the assumptions (H1), (H2") on the
function f which is commonly used and we suppose that {Hk} is a sequence of positive

definite matrices. Assume also that there exist parameters v,;, >0 and v, >0 such
that vd e R"

V;,d'd<d'H, d<v_d'd ..(18)

this condition would be satisfied for instance, if H, =H and H is positive definite as in

Al-Bayati VM-update [3]. We analyze the conjugate gradient algorithm that use the
following modified line-search formula: Set scalars S,, g, L,, # and o with

Sk :_g{dk/(l-”dk”ik) ...(19)
where, Se(0,1), L, >0 is a new parameter, ye[O, 2) and o< (0,v,,;, /). Note that

&<1.
v

min

the specification of o ensures
min

Let «, be the larges « in {sk, 55, ,stk,...}such that
r 1 2
f(x, +ad,)-f, < aa[gk d, +(§Ja,uLk||dk|| } ...(20)

where ||dk||Hk =d/H,d,

Lemma 3.2.1: Suppose that X, is given by the new proposed algorithm defined by {(2),
(13), (14) and (19)} then

Ok.a0k = Pc9x dy ...(21)
holds for all k ,where

T

d

po=1-H9Gc 22)

Lk dk”Hk
and L, is known as a new scalar defined in (14). Let

0 for o, =0

¢ = ykTVk

Ml

Proof:

...(23)

for o, #0

The case of a, =0 implies that p, =1 and g,,, =9, hence (21) is valid, we
now prove for the case of ¢, #0 from (2) and new modified inexact line search o, we
have

.
ng+ldk = ngdk +(gk+1 - gk) dy

=g,d, + al:l(gkﬂ - gk)T (Xk+1 - Xk) from (2) we have d, = alzl(xkﬂ - Xk)
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X1 — ka2 from (23)

=gy dy +al;1¢k‘

=0, d, +0‘k_l¢k”dk”2

g{dk 2
~0id,-| %o
o [Lklldkllijk k

|d,Jf
(1= g B lgrd, from (23)
Lo faull,

= £9¢d,
The proof is complete. #

Theorem 3.2.1: If (H1) and (H2") hold, then the new algorithm generates an infinite
number of sequences {e, } and satisfy

O<L <mL<M ...(24)
where m is a positive integer, M is a large positive constant then

Case (I):
If ke K, then

f(x, +ad,)—f, < ao{gkrdk +(%)akL’;

. 1
:_O'[gkrdk/Lk dk”Z]{ngdk _[Ejﬂgkrdk}
_ . E
=—_ 0(1_(2j'uj/l_k (g{dk)2ﬂ|dk”2
Thus ) )

f(x +ed,)-f, <— 0(1—6}1}/@ (ngdk)zAdk”z, keK, .27)

Let

e e

By (24) we have

s

dk||2}, L is a new parameter defined by (41)
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o
e (o

<0
Let

re-ol ()

This and (27) imply that 7, <#' and

fo,— T, sn'(g{dk/||dk||2)2, ke K, ...(28)
Thus if k € K;, from (28) we can prove that

T
- [Ldk]:o_ ;
keKy, ko0 ”dk”

Case (2):

If keK, then o, <s, this show that s, , can not satisfy the new suggested line
search and thus o, <S5, we show that a=¢,/f were «, be the larges « in
{sk, 5., ,stk,...} can not satisfy (14) and thus

1 .
2)ak JZ

B

i

f(xk+“ka'k)— f, <oaf g(dk+[

using the mean-value theorem on the left hand side of the above inequality, we see that
there exists 6, €[0,1] such that

(i
0.c,.d 2 [
g(xk+k7“j>o-ak/ﬂ g, d, + B

d.Jf

Therefore

1 * 2
T = el |d ”
6, d (2) KTk
g[xk+%] d, >p| g/d, + 7 ...(30)

in this case of k € K, , by (19) and (20) we have

1 .
f(x, +ad,)~ 1, < Ja[g{dk {3 Lk||dk||2}
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l *
<Ua[gkd +(2)skLk||dk||2}
A
Saak[l+(§}u}gkdk

By (H1) we have

: g, d,

lim 0 ...(31
keKz,k—m){ o] J (31
If there exist ¢ >0 and an infinite subset K, < K, such that
_”%k”k >¢, VkeK, .(32)
then by (31), (32) we have
Jim o [d =0 ...(33)
by (30) we have
g[xk+0k“T;dkj d, > pg’d,, kekK, .(34)
where 6, € [0,1] is defined in the proof. By the Cauchy Schwarz inequality and (34) we
have

d 2
Hg(xk n G dy | g,/ = g(xk n gkakko_ g ” k||2
% o]
[ X '
g(xk +kakkJ_ gkj| d,
L p
o
.
2_(1_p)gkdk, kekK,

o]
by (H2") and (31) we obtain

(gl dkj
lim =0 ...(35)
keKz,k—m( ”dk”

by (29), (35) and noting that K, UK, ={1,2,...} we show that (25) holds. #

Lemma 3.2.2.: suppose that (H1), (H2') holds and x, is given by the new proposed
algorithm defined by {(2), (13), (14) and (19)} then
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T
P S ..(36)
<0 dl

Proof:
By the mean value theorem we have

f (Xk+1)_ f (Xk ) =g’ (Xk+1 - Xk)
from (19) we have

Fx ) (%)< _a{l_ﬁljﬂg}ﬁgﬂf 67)

2 |d, "
which implies that f(x.,,)< f(x ). It follows by assumption (HI), (H2") that lim f(x)

exists thus from (18) and (37) we have

T 74 ¥
o]y, BT o o frx ) i)
oF = b, (2]

2

this finishes our proof. #
4. Numerical results:

In this section, we compare the numerical behavior of the new algorithm with
the Zir algorithm for different dimensions of test functions. Comparative test were
performed with (25) (specified in the Appendices 1 and 2) well-Known test function see
[5]. All the results are obtained with newly-programmed FORTRAN routines which
employ double precautions. We solve each of these test function by the:

1- Zirlli algorithm (Zir).
2- The new algorithm (New).
and for each algorithm we used the following stopping criterion |g,,,[ <1x107.

All the numerical results are summarized in Table (1), Table (2) and Table (3).
They present the numbers of iterations (NOI) versus the numbers of function

evaluations (NOF) that are need to obtain the condition ||g,.,,[| <1x10™ while Table (3)

gives the percentage performance of the new algorithm based on both NOI and NOF
against the original Zit algorithm.

The important thing is that the new algorithm solves each particular problem
measured by NOI and NOF respectively, while the other algorithm may fail in some
cases. Moreover, the new proposed algorithm always performs more stably and
efficiently.

Namely there are about (50-52)% on NOI for all dimensions also there are (63-
78)% improvements on NOF for all test functions.
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Table (1). Comparison between the New and Zri algorithms using different values of

12<N<5000 for 1% test functions

TEST Zir  NOF(NOI) New NOF(NOI) L
N. FUNCTI = = N= N= N= N= = N= N= N= N= = |
OF ON 12 36 360 1080 | 4320 | s000 | 12 36 | 360 | 1080 | 4320 | 5000
Test
EX-beal 804 855 956 1004 | 1073 | 1086 | 137 | 142 | 153 | 158 | 165 168
| 644 684 764 802 855 872 | 115 | 128 | 141 | 146 | 150 152
2 GEN- 53 55 59 61 63 65 | 24 | 25 | 27 | 28 30 3
edger 22 24 26 27 28 29 21 | 23 | 25 | 26 28 29
3 Full 85 116 123 265 154 154 25 | 30 | 38 | 42 a7 48
Hession 19 22 25 32 16 16 21 | 27 | 35 | 39 44 45
4 | GEN-Q2 164 164 160 159 159 150 | 160 | 160 | 160 | 160 | 160 160
162 162 157 156 156 156 | 137 | 137 | 137 | 137 | 137 137
5 | Digonald 91 97 103 109 115 118 22 | 22 | 23 | 23 23 23
17 18 19 20 21 2 15 15 | 16 | 16 16 16
6 GEN- 243 241 241 241 241 241 104 | 107 | 118 | 124 | 126 128
quadratic 169 235 235 235 235 235 o4 | 103 | 116 | 122 | 123 124
7| Digonal6 20 21 24 25 26 26 15 16 | 18 |. 19 20 20
17 19 2 23 24 24 12 14 | 16 | 17 18 i3
g GEN- 207 277 301 364 3% 394 | 274 | 296 | 325 | 360 | 380 389
Wolf 166 254 289 324 328 332 | 250 | 286 | 323 | 332 | 36l 364
9 GEN- 763 817 931 985 992 998 | 155 | 160 | 171 | 177 | 177 77|
Shallow 422 449 506 533 554 556 | 153 | 158 | 169 | 175 175 175
10 | Quadratic | 106 531 3043 3140 | 3280 | 3328 19 | 35 | 238 | 269 | 291 298
30 94 373 433 482 | 506 15| 32 | 204 | 224 | 243 247
General TOTAL | 2536 | 3174 | 6001 6353 | 6485 | 6569 | 935 | 993 | 1271 | 1360 [ 1419 [ 1442
of 7 functions 1668 1961 2416 | 2585 | 2699 | 2748 | 833 | 923 | 1185 | 1234 | 1295 | 1307

N<5000 for 2" test functions

Table (2). Comparison between the New and Zir algorithms using different values of 12<

TEST Zir  NOF(NOI) New  NOf(NOI)
N. | FUNCTI 12 36 360 1080 4320 | 5000 12 36 | 360 | 1080 | 4320 5000
OF ON
Test
GEN- F F F F F F| 70 71 73 74 76 76
1 Helical 53 57 59 60 62 62
2 Fred F F F F F F 139 142 147 149 153 153
125 136 | 144 | 146 150 150
3 liarwhid F F F F F F 107 694 240 214 214 214
95 424 | 227 | 200 200 200
4 starcase F F F F F F 22 52 446 | 1310 1360 1392
17 44 426 | 1279 1292 1301
5 TDP F °F F F F F| 144 | 211 | 1179 | 2467 | 2616 2616
130 183 1087 | 2163 2282 2282
6 Biggsh F F F F F F 16 32 232 | 668 684 702
10 23 214 | 214 656 674
7 Miele F F F F F F 184 194 269 268 268 268
146 160 | 187 195 195 195
8 GEN- F F F F F F | 203 209 211 216 217 218
Powell 131 141 145 145 246 247
9 . EX- F F F F F Fl 196 199 | 204 | 206 208 208
Fredent& 177 191 201 203 204 204
Roth
10 TR1 F F F F F F 74 260 | 1311 | 1770 1820 1846
61 230 | 1001 | 1196 1204 1242
11 Almost F F F F F F 20 38 247 470 482 488
Peturbed 16 32 201 354 402 404
quadratic
12 QDP F F F F F F 23 43 112 171 192 198
13 25 57 88 91 93
13 Gen- F F F F F F| 9l 92 95 96 96 96
Centar 69 75 78 79 79 79
14 | sinquadrat F F F F F F | 146 224 | 385 190 190 190
ic 75 124 | 206 | 161 161 161
15 Osp F F F F F F | 833 | 2674 | 2720 | 2842 | 2989 2996
483 | 1918 | 1964 | 1981 | 2018 2068
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Table (3). Percentage performance of the New algorithm against Zri algorithm for
100% in both NOI and NOF

N Costs NEW

12 NOF 63.13

NOI 50.06

36 NOF 68.72

NOI 52.93

360 NOF 78.82
NOI 50.95

1080 NOF 78.59
NOI 52.26

4320 NOF 78.12
NOI 52.02

5000 NOF 78.05
NOI 52.44

5. Conclusions:

In this paper, a new PCG-algorithm with a self-scaling VM-update and a new
search direction formula is proposed. A modified formula of an inexact line search is
implemented to solve a large-scale unconstrained optimization test functions. Our
numerical results supports our claim and also indicate that the new algorithm
sufficiently decrease the function values and iterations and it needs an extra line search
conditions satisfied near the stationary point of the proposed line search procedure.

Appendix 1:

All the test functions used in Table (I) for this paper arc from general literature.
See [5]:

1. Generalized Beale Function:

f(x)= HZ” [1'5 - xy + (- xzj)]z + [2-25 =Xy (- xz?f)]z + [2'625 = Xy (1 - x*_?f]z »
i=1

xy =[-1.=1p=1.-1.].

2. Generalized Edger Function:

ni?2 ,
f(x) = Z(xzf—_l _2)4 + (x?_."—l _2)2x§x + (xzf' + l)h ’
i=1
x, =[1.,0.,...,1.,0.].
3. Full Hessian Function:
2 n
100=(5m] +S0x ety -21, 40,
i=l i=l

x, =[1..1.,...1.].
4. Generalized quadratic Function GQ2:
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)= =17+ D (7 =%, = 2)%
x, =[1..1.,.. 1.].
5. Diagonal 4 Function:
S(x)=
x, =[L1,....,1] , ¢=100.
6. Generalized quadratic Function GQ1
n=1
f)=2x +(x +x1),
i=1
x, =[1..1.,...1.].
7. Diagonal 6 Function:
F(x) = (exp(x)~(1+x,),
i=l

xo =L ]l 1],

8. Generalized Wolfe Function:

ni2 , 5
1
S(xzf—i T CXy, ):
1

=

n-1
FE)=(x,G=-x/2)+2x, =)+ (v —x,G=x,/2+2x, D) +(x,, —x,3-x,/2)-1),

i=1

xy =[-1.,...~L].
9. Generalized Shallow function:
ni2

J(x)= Z(xzzf—! _xzf)z +(1_x21—|)2 s

X, =[-2.,—2.,...,—2.,-2.].
10. Quadratic Function QF2:

n

) =52 i =) =x,,

i=1
x, =[0.5,0.5,...,0.5].
Appendix 2:

All the test Functions used in Table (2) far this paper are from general literature
See [5]:
1. General Helical Function:

ni3
F(x)=" (100x;, =10% H,)* +100(R, =1)* +x3,,

i=l
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- 1 X3 .
Q2m)tanT 2L ifx,, >0
Xa;
where R, =sqrt(x}_, +x..),H, = "
0.5+2r)" tan™ =L if x,,, <0

x, =[-1.,0.,0....,-1.,0.1,0..
2. Extended Fred Function:

nl2 ni2

f(x)= Z(_13 + Xy 0= xy) + (3 — 2)(’:2;'))2 + Z (29 + 3y + (1= x5.) + (xyy = 14)(x5,)) "
i=1

J=1

%y =[1.2.,...,1]
3. Liarwhd Function (cut):

f(x)= i4(—x1 +x7)7 + i(xi -1

%, =[4.4.,...4].

4. Staircase? Function:

o5

x, =[0.,0.,...,0.] .

5. Tridiagonal Perturbed Quadratic Function:
n-l

fx)=x]+ fozz + (X + X+ X))

i=2

x, =[0.5,0.5.,...0.5].
6. Biggsbl Function (CUTE):

n-1

f(x) = (x.f _1)2 +Z(x:'+1 _‘x:')z +(1d_xn)2 ’
Xy =[11e00ll].

7. Mill and Cornwell function:

nl4 5
J(x)= Z[exp(xm 3 +10x4; 2) + 504 = Xx4)" (X4 “zxm—l)d +10(x,,_3

i=]

xo =[1,2.2,2,.0.,2.2.2.]

8. Generalized Powell function:
nl3

£) = 23~ [ )= sin(=42) - el -2)),

0 :[0‘91 '32‘3"'30-9]”52.]
9. Extended Freudenstein & Roth Function:

37
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2

ni2 ,
F) = (=134 x, + (5= x,)%y = 2)x,, P+ (=29 +x, +((xy +Dxy ~14)x,,)"
i=1 .

x, =[0.5.,-2.,0.5,-2.,...,0.5,-2.].
10.Extended Tridigonal-1 Function:

ni2

SO =Y (X + 3y, =3)7 + (3 =Xy, +1)
i

x, =[2,2,....2].

11. Almost Perturbed Quadratic Function:

f(x)= _lez'xf ks (x +x,)7

Xy = [0.20.5,...,0.5] :

12. Quadratic Diagonal Perturbed Function:

h 2 n

f(x) :(in] + ) xl,
=1 =1

x, =[0.5,0.5,...,0.5] .

13. Generalized Cant real Function:

nid
f(x)= Z [(cxp(x« =3) =Xy, )4 +100(x,,_, — x4(~1)6 + (arctan(x,, ;| — x4;:))4 + x4;—3]>

i=1

x, =[1.,2.,2.,2.,..,1.,2.,2.,2.].
14. Sinquad Function (CUTE):

nl2

f(x)=(x, -1’ +Z(sin(x,. —-x,)—x; +xf)2 +(x2=x0),

x, =[0.1,0.1,..,0.1].
15. Generalized OSP (Oren and Spedicato) Function:

f)= {ifxf} ,
%, =[L ],
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