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ABSTRACT 

In this paper, we study the global convergence properties of the new class of 

preconditioned conjugate gradient descent algorithm, when applied to convex objective 

non-linear unconstrained optimization functions. 

We assume that a new inexact line search rule which is similar to the Armijo 

line-search rule is used. It's an estimation formula to choose a large step-size at each 

iteration and use the same formula to find the direction search. A new preconditioned 

conjugate gradient direction search is used to replace the conjugate gradient descent 

direction of ZIR-algorithm. Numerical results on twenty five well-know test functions 

with various dimensions show that the new inexact line-search and the new 

preconditioned conjugate gradient search directions are efficient for solving 

unconstrained nonlinear optimization problem in many situations. 

Keywords: Preconditioned CG, Unconstrained Optimization, Self-Scaling VM-update, 

inexact Line-Search. 

للامثلية غير المقيدة مع خط بحث غير تام مشروطة جديدة تقنية  
 ايفان  صبحي لطيف                                      عباس يونس البياتي

جامعة الموصل/كلية علوم الحاسوب والرياضيات          جامعة صلاح الدين/كلية التربية               

 16/4/2007 تاريخ قبول البحث :   2006/ 18/12 تاريخ استلام البحث :
 الملخص

فييه اييلا التحيير سييا تقاسيية التليياقب اليييامل ل واقخمييية جديييدد ميين تواقخميييات التييدق  المترافيي  الميييرو ة 
باسييت دام تواغ ر يير مل ييدد ر يير تةييية محدبيية  ال واقخمييية الىديييدد سعتمييد علييم ابىييات تيي  بحيير جديييد مييياب  ل يي  

ت تةيييوات بحييير يكتييير ويديييت دم يجيييا الهييييحة فبىيييات اسىيييا  التحييير فيييه التيييه سديييت دم فيييه ابىيييا Armijoبحييير 
ال واقخمية الىديدد الته سللل من كجاءد تواقخمية التيدق  المترافي  المديت دمة  سيا اسيتحدار تواقخميية جدييدد للتيدق  

ة سوضييب بييع  تيي  تاليية وبعبعييات م تلجيي  (25)المترافيي  الميييروس باسييت دام تواقخمييية وتييتا  ي ييوسن  الةتييا   العملييية لييي 
التحيير الىديييد مييا ااسىييا  الىديييد لل واقخمييية الملترةيية يكجيير كجيياءد فييه ابىييات ةلييوغ الييدواغ اللاتةييية ور يير المل ييدد 

 ملاقية بال واقخميات المماثلة فه مىاات عدد 
التحيدير ، تي   -VMمل يد ، والتحىييا اليلاسه ح ير ال، والتحدي ن  CG: مدتلة الييرس مجتاةيةالكلمات ال

 تحر ر ر تق   ال
1. Introduction 

Some important global convergence result for various methods using line-search 

procedures have been given [1], [4] the above mentioned line search methods are 

monotone descent for unconstrained optimization [10], [11]. Non monotone line-

searches have been investigated also by many authors see [6], [9]. The Barzilai-Borwein 

method [2], [8] is a non monotone descent method which is an efficient algorithm for 

solving some special problem, Zirilli [12] extend the Armijo line search rule ant analyze 

the global convergence of the corresponding method. 
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In this paper, we extend the Armijo line-search rule so that we can design a new 

inexact line search technique and we choose the search directions of AL-Bayati Self-

Scaling [3] variable metric update which based on two parameter family of rank-two 

updating formulae. Numerical results show that the new algorithm which enables us to 

choose large step-size at each iteration and reduce the number of functions. The new 

algorithm is efficient for solving unconstrained optimization problems. 

We consider the following unconstrained optimization problem of n variables, 

,),( nRxxfMin           …(1) 

where )(xf  is twice continuously differentiable and its gradient g is exist available. We 

consider iterations of the form 

kkkk dxx +=+1           …(2) 

where kd  is a search direction and k  is the step-length obtained by means of one-

dimensional search. In conjugate gradient method when the function is quadratic and 

the line search is exact, another broad class of methods may be defined by the following 

search direction: 

kkk gHd 1−−=           …(3) 

where kH  is a non singular symmetric matrix. Important special cases are given by 

IHk =                                 (Steepest descent direction)  

)(2

kk xfH =                   (Newton's direction) 

Variable Metric (VM) methods are also of the form (3) and in this case kH  is 

not only a function of  kx , but depends also on 1−kH  and 1−kx . 

All these methods are implemented so that kd , is a descent direction, i.e. 

0k

T

k gd               …(4) 

which guarantees that the function can be decreased by taking a small step along kd  for 

the Newton type method (3). We can ensure that kd  is a descent direction by defining 

kH  to be positive definite. 

For conjugate gradient method, obtaining descent direction is not easy and 

requires a careful choice properties of line search methods and it can be studied by 

measuring the goodness of the search direction and by considering the length of the 

step. The quality of the angle between the steepest descent direction kg−  and the search 

direction. We can define: 

0).(,cos  −=− kkkkkk dgdgdg                     …(5) 

The length of the step is determined by the line search iteration. A strategy that 

will play a central role in this paper is to set scalars ks ,  , L , 0  with: 

 ( )2

kkkk dLdgs −=  ,    );1,0(    )2/1,0( . 

Let k  be the larges   in  ,...,, 2

kkk sss    such that  

kkkkk dgdxff −+−  )(                                        …(6) 
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The inequality ensures that the function is reduced sufficiently, we will call 

these relations as Armijo condition. 

2. Zirlli Inexact Line-Search Algorithm (Zir): 

Inexact line-search rule was implemented the following assumptions [7], [11]. 

(H1) The function )(xf  has a lower bound on the level set 

 )()()( 00 xfxfRxxL n −=  where 0x  is given 

(H2) The gradient )(xg  of )(xf  is Lipschitz continuous in an open convex set B that 

contains 0L  the; i.e., there exists L  such that 

ByxyxLygxg −− ,,)()(          …(7) 

The modified Armijo line search rule as [1]: 

Set scalars  ,,, kk LS  and   with ( )2

kkkk dLdgs −= ,  )2,0,0),1,0(   kL  

and )2/1,0( . 

Let k be the larges   in  ,...,, 2

kkk sss    such that  

















+−+

2

2

1
)( kkkkkk ddgfdxf                               …(8) 

2.1. Outlines of the Zir Algorithm:  

The implementable inexact line search algorithm is stated as follows [12]: 

Stepl: Given some parameters, )2/1,0( , nRx 0 , )2,0(),1,0(   , 1=0L  

let and set 0=K ,   is a small parameter. 

Step2: If kg  then stop. Else go to step3. 

Step3: Choose kd , to satisfy the angle property (5) and set kk gd −= . 

Step4: Set kkkk dxx +=+1 , where k  is defined by the modified Armijo line search 

rule (8). 

Step5: Set kkk xxV −= +1 ; kkk ggY −= +1  and 1+kL  is determined by 

k

k

k
V

y
L =+1                       …(9) 

Step6: Set 1+= kk and go to step 2. 

2.2. Some Properties of the Zir Algorithm: 

Theorem 2.2.1: Assume that (H1) and (H2) hold, the search direction kd  

satisfies (4) and k  is determined by the modified Armijo line-search rule. Zir 

Algorithm generates an infinite sequence  nx  with 

LmL kk 0                       …(10) 

where km  is appositive integer and  0Mmk with 0M  being large positive constant 

then 

+
















=

2

1k k

kk

d

dg

                          …(11) 
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for the details of the proof see [12]. 

Corollary 2.2.1: If the condition in theorem 2.2.1 hold then 

0lim =














→
k

kk

k d

dg

                    …(12) 

In fact, Assumption (H2) can be replaced by the following weaker assumption. 

(H2') the gradient )(xg  of )(xf  is uniformly continuous on an open convex set B that 

contains 0L  see [9]. 

3. A New Proposed Preconditioned Inexact Line-Search Algorithm (New):  

In this section we propose a new algorithm which implements the step-size k  

with inexact line search rule. This formula is implemented with AL-Bayati self-scaling 

[3] variable metric update. 

3.1. Outlines of the New Algorithm: 

The outlines of the new proposed Algorithm are stated as follows: 

Step1: Given some parameters )
2

1
,0( , nRx 0 , )1,0( , 810=M , 0H  is identity 

positive definite matrix and 1.0* =
0

L . Let,   is a small parameter and set 0=K . 

Step2: If kg  then stop. Else go to step3. 

Step3: Choose kd  to satisfy the angle property (5) and satisfy the new search direction. 

           




+−

=−
=

,1,

,1,

* k  if    dLgH

k  if                 gH
d

kkkk

kk

k                               …(13) 

Step4: Set kkkk dxx +=+1 where k  is defined later by a new modified line search rule 

(19), (20). 

Step5: Set kkk xxV −= +1 , kkk ggY −= +1  and 1+kL  is determined by 

            














=+

k

kk

T

k

k

kk

T

k
kk

V

YHY

V

YHg
LL ,,min

2

**

1 ,                  …(14) 

Step6: Update kH  by 1+kH , see [3] 

           
k

T

k

T

kk
k

T

kk

k

T

kk

k

T

kkk
kk

YV

VV
WW

YHY

HYYH
HH +








+−=+ 1               …(15) 

            ( ) 







−=

kk

T

k

kk

k

T

k

k
kk

T

kk
YHY

YH

YV

V
YHYW

21
                …(16) 

            
kk

kk

T

k
k

YV

YHY
=                    …(17) 

Step7: If available storage is exceeded then employ a restart option either with nk =  or 

k

T

kk

T

k gggg 111 +++ 
 i.e. orthogonality condition is not satisfy see [7]. 

Steps: Set 1+= kk  and go to step2. 
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3.2. Some Theoretical Properties of the New Algorithm: 

We analyze the global convergence of the proposed new inexact line-search 

algorithm. For the proof of convergence we adopt the assumptions (H1), (H2') on the 

function f which is commonly used and we suppose that  kH  is a sequence of positive 

definite matrices. Assume also that there exist parameters 0min v  and 0max v  such 

that nRd   

ddvdHdddv T

k

TT

maxmin    ...(18)  

this condition would be satisfied for instance, if HHk   and H is positive definite as in 

Al-Bayati VM-update [3]. We analyze the conjugate gradient algorithm that use the 

following modified line-search formula: Set scalars  ,,, kk LS  and   with 

( )2

kHkkkk dLdgs −=                                   …(19) 

where, ),1,0( 0*

kL  is a new parameter,  )2,0  and ),0( min  v . Note that 

the specification of   ensures 1
min


v


. 

Let k be the larges   in  ,...,, 2

kkk sss   such that  

















+−+

2

2

1
)( kkkkkkk dLdgfdxf                                     …(20) 

where kkkHk dHdd
k

=  

Lemma 3.2.1: Suppose that kx  is given by the new proposed algorithm defined by {(2), 

(13), (14) and (19)} then 

kkkkk dgdg  =+1                       …(21) 

holds for all k ,where  

2*
1

kHkk

kkk
k

dL

dg
 −=                       …(22) 

and *

kL  is known as a new scalar defined in (14). Let 











=

=
0

00

2 k

k

kk

k

k for
V

Vy

for








                   …(23) 

Proof: 

The case of 0=k  implies that 1=k  and kk gg =+1  hence (21) is valid, we 

now prove for the case of 0k  from (2) and new modified inexact line search k  we 

have 

( ) k

T

kkkkkk dggdgdg −+= ++ 11

  

          ( ) ( )kk

T

kkkkk xxggdg −−+= ++

−

11

1  from (2) we have ( )kkkk xxd −= +

−

1

1   
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2

1

1

kkkkkk xxdg −+= +

−   from (23)  

          
21

kkkkk ddg  −+=  

          
2

2 kk

Hkk

kk
kk d

dL

dg
dg

k



















−=  

          k

T

k

Hk

k

k

k

dg
d

d

L
k














−=

2

2

1
1   from (23) 

          k

T

kk dg=  

The proof is complete.   # 

Theorem 3.2.1: If (H1) and (H2') hold, then the new algorithm generates an infinite 

number of sequences  k  and satisfy 

MmLLk  *0                    …(24) 

where m is a positive integer, M is a large positive constant then 

0lim =












 −

→
k

kk

k d

dg

 

Proof:  

Let  kk skK == 1 ,  kk skK = 2   

Case (l): 

If 1Kk  then 

















+−+

2*

2

1
)( kkkkkkkk dLdgfdxf   , *L  is a new parameter defined by (41) 

                             















−−= kkkkkkkk dgdgdLdg  

2

12*  

                           ( ) 22*

2

1
1 kkkk ddgL  
























−−=  

Thus 

( ) ( ) 22*

2

1
1 kkkkkkk ddgLfdxf  
























−−−+ ,    1Kk                …(27) 

Let 

*

2

1
1 kk L
















−−=  ,     1Kk  

By (24) we have 

*

2

1
1 kk L
















−−=   
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     mL















−− 

2

1
1  

     ML















−− 

2

1
1  

     0  

Let  

ML















−− 

2

1
1  

This and (27) imply that  k  and  

( )22

1 kkkkk ddgff −+ ,    1Kk                   …(28) 

Thus if 1Kk , from (28) we can prove that 

0lim
,1

=












 −

→
k

kk

kKk d

dg

.    # 

Case (2): 

If 2Kk  then kk s  this show that ks , can not satisfy the new suggested line 

search and thus kk s   we show that  k=  were k  be the larges   in 

 ,...,, 2

kkk sss   can not satisfy (14) and thus 



























+−+







 

2*

2

1

)(
kkk

kkkk
kk

k

dL

dgf
d

xf  

using the mean-value theorem on the left hand side of the above inequality, we see that 

there exists  1,0k  such that  



























+







+








 

2*

2

1
kkk

kkk
kkk

k

dL

dg
d

xg  

Therefore 



























+







+








 

2*

2

1
kkk

kkk

T

kkk
k

dL

dgd
d

xg                …(30) 

in this case of 2Kk , by (19) and (20) we have 

 

















+−+

2*

2

1
)( kkkkkkkk dLdgfdxf    
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                           















+

2*

2

1
kkkkk dLsdg  

                           k

T

kk dg















+ 

2

1
1  

By (H1) we have  

0lim
,2

=












 −

→
k

kk

kKk d

dg

                     …(31) 

If there exist 0  and an infinite subset  23 KK   such that 





−

k

kk

d

dg
,    3Kk                      …(32) 

then by (31), (32) we have 

0lim
,3

=
→

kk
kKk

d                     …(33) 

by (30) we have 

kkk

T

kkk
k dgd

d
xg 













+ ,    3Kk                  …(34) 

where  1,0k  is defined in the proof. By the Cauchy Schwarz inequality and (34) we 

have 

2

2

k

k

k
kkk

kk
kkk

k
d

d
g

d
xgg

d
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by (H2') and (31) we obtain 
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
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


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→
k

kk
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which contradicts (32) this show that 

0lim
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
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





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k

kk

kKk d
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                   …(35) 

by (29), (35) and noting that  ...,2,121 =KK   we show that (25) holds.   # 

Lemma 3.2.2.: suppose that (H1), (H2') holds and kx  is given by the new proposed 

algorithm defined by {(2), (13), (14) and (19)} then 
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
−

 0kd
k

kk

d

dg

                      …(36) 

Proof: 

By the mean value theorem we have 

( ) ( ) ( )kk

T

kk xxgxfxf −=− ++ 11   

from (19) we have 
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which implies that ( ) ( )kk xfxf +1 . It follows by assumption (Hl), (H2') that ( )k
k

xf
→

lim  

exists thus from (18) and (37) we have 
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this finishes our proof.   # 

4. Numerical results: 

In this section, we compare the numerical behavior of the new algorithm with 

the Zir algorithm for different dimensions of test functions. Comparative test were 

performed with (25) (specified in the Appendices 1 and 2) well-Known test function see 

[5]. All the results are obtained with newly-programmed FORTRAN routines which 

employ double precautions. We solve each of these test function by the: 

1- Zirlli algorithm (Zir). 

2- The new algorithm (New). 

and for each algorithm we used the following stopping criterion 5

1 101 −

+ kg . 

All the numerical results are summarized in Table (l), Table (2) and Table (3). 

They present the numbers of iterations (NOI) versus the numbers of function 

evaluations (NOF) that are need to obtain the condition 5

1 101 −

+ kg  while Table (3) 

gives the percentage performance of the new algorithm based on both NOI and NOF 

against the original Zit algorithm. 

The important thing is that the new algorithm solves each particular problem 

measured by NOI and NOF respectively, while the other algorithm may fail in some 

cases. Moreover, the new proposed algorithm always performs more stably and 

efficiently. 

Namely there are about (50-52)% on NOI for all dimensions also there are (63-

78)% improvements on NOF for all test functions. 
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Table (1). Comparison between the New and Zri algorithms using different values of 

12<N<5000 for 1st test functions 
 

 
 

Table (2). Comparison between the New and Zir algorithms using different values of  12< 

N<5000 for 2nd test functions 
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Table (3). Percentage performance of the New algorithm against Zri algorithm for 

100% in both NOI and NOF 
 

 

5. Conclusions: 

In this paper, a new PCG-algorithm with a self-scaling VM-update and a new 

search direction formula is proposed. A modified formula of an inexact line search is 

implemented to solve a large-scale unconstrained optimization test functions. Our 

numerical results supports our claim and also indicate that the new algorithm 

sufficiently decrease the function values and iterations and it needs an extra line search 

conditions satisfied near the stationary point of the proposed line search procedure. 

Appendix 1: 

All the test functions used in Table (l) for this paper arc from general literature. 

See [5]: 

1. Generalized Beale Function: 

 

2. Generalized Edger Function: 

 

3. Full Hessian Function: 

 

4. Generalized quadratic Function GQ2: 
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5. Diagonal 4 Function: 

 

6. Generalized quadratic Function GQ1 

 

7. Diagonal 6 Function: 

 

8. Generalized Wolfe Function: 

 

9. Generalized Shallow function: 

 

10. Quadratic Function QF2: 

 

Appendix 2: 

All the test Functions used in Table (2) far this paper are from general literature 

.See [5]:  

1. General Helical Function:  

 



 A New Preconditioned Inexact Line-Search Technique for Unconstrained Optimization 
 

 

 37 

 

 

2. Extended Fred Function: 

 

3. Liarwhd Function (cut):  

 

4. Staircase2 Function: 

 

5. Tridiagonal Perturbed Quadratic Function: 

 

6. Biggsbl Function (CUTE):  

 

7. Mill and Cornwell function: 

 

8. Generalized Powell function:  

 

9. Extended Freudenstein & Roth Function: 
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10.Extended Tridigonal-1 Function: 

 

11. Almost Perturbed Quadratic Function: 

 

12. Quadratic Diagonal Perturbed Function: 

 

13. Generalized Cant real Function: 

 

14. Sinquad Function (CUTE): 

 

15. Generalized OSP (Oren and Spedicato) Function:   
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