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ABSTRACT
A (k ,n)-arc is a set of k points of a projective plane PG(2,q) such that some r,
but no r + 1 of them, are collinear. The (k ,r)-arc is complete if it is not contained in
a(k +1,r)-arc.
In this paper we give geometrical construction of complete (k ,r)-arcs in PG(2,7),
r=2,3,..., 7, and the related projective [n,3,d]7 codes.
Keywords: Projective plane, complete arcs, codes.
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1. Introduction

Let PG(2,q) be the projective plane over Galois field GF(q). The points of PG(2,q)
are the non-zero vectors of the vector space V(3,q) with the rule that X(x1,x2,x3) and
Y (Ax1,Ax2,Ax3) are the same point, where A € GF(q)\{0}.

Similarly, X[x1,x2,x3] and y[(Ax1,AX2,AX3] are the same line, where A € GF(q)\{0}.
The point X(x1,X2,X3) is on the line Y[y1,y2,ys] if and only if x1y1+X2y2+x3ys=0.

The number of points and the number of lines in PG(2,q) isg?> + q + 1 .Thereare g + 1
points on every line and g+1 lines through every point [1,2,3,4,5,6] .
Definition 1.1:[1]

A (k ,n-arc K is in PG(2,q) is a set of k points such that some line of the plane
meets K in n points but such that no line meets K in more than r points, where r > 2.
Definition 1.2:[1]

A (k ,r)-arc is complete if it is not contained in a (k+1,r)-arc. The maximum number
of points that a (k,2)-arc can have is m(2,q) and this arc is an oval.
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Theorem 1.3:[1]

In PG(2.0) m(2,q)={q+1 for g odd

g+2 for q even

Definition 1.4:[3]
A line € in PG(2,q) is an i-secant of a (k ,r)-arc K if | ¢~K]| =i.

Definition 1.5:[3]
A variety V(F) of PG(2,q) is a subset of PG(2,q) such that

V(F) = {P(X) € PG(2,9) | F(X) = 0}. Where F(X) is a homogenous polynomial F in
three variables xi1,x2,x3 over Fq . P(X) is the point of PG(2,q) represented by X=(
X1,X2,X3).

Definition 1.6:[3]
Let Q(2,9) be the set of quadrics in PG(2,q), that is the varieties V(F), where:
F=a,X]+a,X; +a,X;+a,X X, +a,X X, +a,X,X ..(1)
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is non singular, then the quadric (1) is a conic.

Theorem 1.7:[3]
Every conic in PG(2,q) isa (q + 1) -arc.

Theorem 1.8:[3]
In PG(2,q), with g odd, every oval is a conic.

Definition 1.9:[3]
A point N which is not on a (k ,r)-arc has index if there exactly i(n-secants) of the
arc through N, the number of the points N of index i is denoted by Ni.

Remark 1.10:[3]
The (k ,r)-arc is complete if and only if No = 0. Thus, the arc is complete if and
only if every point of PG(2,q)is not on the arc lies an some n-secant of the arc.

Definition 1.11:[4,5]

An (b ,t)-blocking set B in PG(2,q) is a set of b points such that every line of
PG(2,q9) intersects B in at least t points, and there is a line intersecting B in exactly t
points.

If B contains a line, it is called trivial, thus B is a subset of PG(2,q) which meets
every line but contains no line completely; that is t < |B n ¢|< q for every line ¢ in
PG(2,g). So, B is a blocking set if and only if PG(2,0)\B is.[1] We may note that a
blocking set is merely a (k,r)-arc with r < g and no 0-secants. Note that a (k ,r)-arc is the
complement of (9>+q+1-k,q+1-r)-blocking set in PG(2,9)
and conversely. A blocking set B is minimal if B\{p} is not blocking set for every p e
B.
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Definition 1.12:[1]

Let B be a set contains a line £ minus a point p plus a set of q points, one on each
of the q lines through P other than £ but not all collinear; b = 2q, then B is minimal
blocking set. Blocking sets of this kind are called Redei-type studied by [Bruen, A.A.
and Thas, J.A.(1977)] and in [Blokhuis, A.A. and Brouwer, E.and S.Z. “onyi, T.(1995)].

Definition 1.13:[5]

Let V(n,q) denote the vector space of all ordered n-tuples over GF(q). A linear code
C over GF(q) of length n and dimension k is a k-dimensional subspace of VV(n,q). The
vectors of C are called codewords. The Hamming distance between two codewords is
defined to be the number of coordinate places in which they differ. The minimum
distance of a code is the smallest distances between distinct codewords. Such a code is
called an [n,k,d]q code if its minimum hamming distance is d.

There exists a relationship between (n ,r)-arcs in PG(2,q) and [n,3,d]q codes, given
by the next theorem.

Theorem 1.14:[6]
There exists a projective [n,3,d]q code if and only if there exists an (n ,n — d)-arc in
PG(2,).

A projective plane ©m = PG(2,7) over GF(7) consists of 57 points, 57 lines, each line
contains 8 points and through every point there are 8 lines.

Let Pi and L; be the points and lines of PG(2,7), respectively. Let i stands for the
point Pi, i=1,2,..., 57. The points and the lines of PG(2,7) are given in omit, table (1).

Definition 1.15:[3]
The points in PG(2,p) have a unique forms which are (1,0,0), (x,1,0),
(x,y,1)and(1,1,1)

for all x, y in GF(p).

There exists one point of the form (1,0,0),
There exists p points of the form (x,1,0),
There exists p? points of the form (x,y,1),

When( x ,y=0) then the points in PG(2,p) are called reference points .

There exists one point of the form (1,1,1) is called unit point.
2- The Constructions

Let A ={1,2,9,17} be the set of reference and unit points, where 1= (1,0,0) ,
2=(0,1,0),9=(0,0,1), 17=(1,1,1).[see table(1)]

A is a (4,2)-arc since no three points of A are collinear. There are twenty points of
index zero for A, which are: 26,27,28,29,32,34,35,36,39,40,42,43,46,47,48,50,53,54,55
and 56 . Hence, A is incomplete (4,2)-arc.

2.1 The Conics in PG(2,7) through the Reference and Unit Points

The general equation of the conic is:

ax/+aXx;+ax;+ax,x,+axx,+ax,x,=0 ..(1)
By substituting the points of A in (1), we get;

ar=a,=az3=0 and
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as+as+as=0 so0 (1) becomes:

ax, X, +axx,+ax,x,=0 ...(2)
If as =0, then the conic is degenerated, therefore as= 0, similarly, as =0 and as = 0.
Dividing equation (2) by as, we get:

XX, +oX X, +Bx,x, =0 where a=2 ,B:i,then B=-(1+a)
a a

sincel+a+ B =0(mod?7).

a=0and o =6, forifa =0 or o =6 we get a degenerated conic, thus, o =1,2,3,4,5
and (2) can be written as:

XX, +ax,X, —(1+a)x,x,=0 ...(3)
2.2 The Equations and the Points of the Conics in PG(2,7) through the Unit and
Reference Points
For any value of a, there is a unique conic contains 8 points as the following

1. If o =1, then the equation of the conic Cy is x X, +X,X, +5x,x, =0
The points of Cy are {1,2,9,17,29,35,40 and 48}.

2. If a =2, then the equation of the conic C2is x X, +2x X, +4x,x,=0
The points of C» are{1,2,9,17,28,36,39 and 55}.

3. If a =3, then the equation of the conic Czis x X, +3x X, +3x,x,=0
The points of Cz are {1,2,9,17,26,32,50 and 56}.

4. If a =4, then the equation of the conic C4 is X X, +4x X, +2x,x, =0
The points of Cs are {1,2,9,17,27,43,46 and 54}.

5. If a =5, then the equation of the conic Cs is x X, +5x X, +x X, =0
The points of Cs are {1,2,9,17,34,42,47 and 53}.

Thus ,we found five maximum complete (k,2)-arcs C1, Cz, Cs3, C4 and Cs.

2.3 The Construction of Complete (kr, r)-arcs in PG(2,7)

The complete (k,n)-arcs in PG(2,7) can be constructed by eliminating the conics
given above from the projective plane PG(2,7) as follows:

2.3.1 The Construction of Complete (k7,7)-arc and the related projective [43,3,36]7
codes

We take one conic, say Ci, and let K =7 - Cy, C1 = {1,2,9,17,29,35,40,48}=

{3,4,5,6,7,8,10,11,12,13,14,15,16,18,19,20,21,22,23,24,25,26,27,28,30,31,32,33,34,36,
37,38,39,41,42,43,44,45,46,47,49,50,51,52,53,54,55,56 and 57}

The construction must satisfy the following:

(1) Kintersects any line of 7 in at most 7 points.
(2) Every point not in K is on at least one 7-secant of K.
The points: 8,16,20,21,30,44,49,51 and 57 are eliminated from K to satisfy (1).
The points of index zero for K 1,17,29 are added to K to satisfy (2), then
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K: = K v {1,17,29}\{8,16,20,21,30,44,49,51 and 57} Thus K; =
{1,3,4,5,6,7,10,11,12,13,14,15,17,18,19,22,23,24,25,26,27,28,29,31,32,33,34,36, 37,38,
39,41,42,43,45,46,47,50,52,53,54,55 and 56} is a complete (43,7)-arc as shown in table
(2).

Let B = n — K7={2,8,9,16,20,21,30,35,40,44,48,49,51 and 57} is (14,1)-blocking
set as shown in table (2). P: is of Redei-type contains the line €1 =
{2,9,16,23,37,44,51,30}\{37} and one point on each line through the point 37 which are
non-collinear points: 40,35,20,57,48,8 and 49.By theorem (1.14), there exists a
projective [43,3,36]7 code which is equivalent to the complete (43,7)-arc K.

2.3.2 The Construction of Complete (ks,6)-arc and the related projective [35,3,29]7
codes

We take two conics, say C; andC,,Cy = {1,2,9,17,29,35,40 and 48}, C> =
{1,2,9,17,28,36,39 and 55},

let K=n—-C1LC2,= {3,4,5,6,7,8,10,11,12,13,14,15,16,18,19,20,21,22,23,24,25,26,27,30,
31,32,33,34,37,38, 41,42,43,44,45,46,47,49,50,51,52,53,54,56,57}

The construction must satisfy the following:

1) K intersects any line of « in at most 6 points.

2 Every point not in K is on at least one 6-secant of K.

The points: 4,5,8,10,16,19,23,30,37,42,44 and 56 are eliminated from K to satisfy
(1). The points 35, 55 are added to K to satisfy (2), then

Ke = K U {35,55}\{4,5,8,10,16,19,23,30,37,42,44 and 56}

={3,6,7,11,12,13,14,15,18,20,21,22,24,25,26,27,31,32,33,34,35,38,41,43,45,46,

47,49,50, 51,52,53,54,55 and 57}

Ke is a complete (35,6)-arc, then shows table (3)

B> = {1,2,45,8,9,10,16,17,19,23,28,29,30,36,37,39,40,42,44,48 and 56} is a
(22,2)-blocking set as shown in table (3). By theorem (1.14), there exists a projective
[35,3,29]- code which is equivalent to the complete (35,6)-arc K.

2.3.3 The Construction of Complete (ks,5)-arc and the related projective [27,3,22]7
codes

We take the union of three conics, say C1, C2 and Cs,
CiuCruC3={1,2,9,17,26,28,29,32,35,36,39,40,48,50,55 and 56}.

Let K=n - C; UC2 U C3 = {3,4,5,6,7,8,10,11,12,13,14,15,16,18,19,20,21,22,23,
24,25,27,30,31,33,34,37,38,41,42, 43,44,45,46,47,49,51,52,53,54 and 57}

The construction must satisfy the following:

(1) Kintersects every line of = in at most 5 points.
(2) Every point not in K is on at least one 5-secant of K.
The points: 3,5,6,7,8,11,15,16,18,20,23,24,33,34,37,4251,52 and 54 are
eliminated from K in order to satisfy (1). The points 17,32,35,56 are added to K to
satisfy (2), then

Ks = K U {17,32,35,56}\{3,5,6,7,8,11,15,16,18,20,23,24,33,34,37,42,51,52 and
54}
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={4,10,12,13,14,17,19,21,22,25,27,30,31,32,35,38,41,43,44,45,46,47,49,53, 56
and 57}

is a complete (26,4)-arc, then shows table (4)

B:={1,2,3,5,6,7,8,9,11,15,16,18,20,23,24,26,28,29,33,34,36,37,39,40,42,48,50,51,52,54,
55} is a (31,3)-blocking set as shown in table (4). By theorem (1.14), there exists a
projective [27,3,22]7 code which is equivalent to the complete (26,4)-arc Ks.

2.3.4 The Construction of Complete (k4,4)-arc and the related projective [17,3,13]7
codes

We take the union of four conics, say C1, C2, Cz and Ca,

C1 U Cy U Cs U Cq = {1,2,9,17,26,27,28,29,32,35,36,39,40,43,46,48,50,54,55 and
563}

LetK=n—-C1UCruU C3uU Cy

={3,4,5,6,7,8,10,11,12,13,14,15,16,18,19,20,21,22,23,24,25,
30,31,33,34,37,38

41,42,44,45, 47,49,51,52,53 and 57}
The construction must satisfy the following:

(1) Kiintersects every line of r in at most 4 points.
(2) Every point not in K is on at least one 4-secant of K.
The points: 3,5,6,7,11,15,16,18,21,22,25,30,37,38,41,42,44,49,52 and 53 are
eliminated from K in order to satisfy (1), and there are no points of index zero, then

Ks = K\{3,5,6,7,11,15,16,18,21,22,25,30,37,38,41,42,44,49,52 and 53}
={4,8,10,12,13,14,19,20,23,24,31,33,34,45,47,51 and 57}
is a complete (17,4)-arc, then

Pa =
{1,2,3,5,6,7,9,11,15,16,17,18,21,22,25,26,27,28,29,30,32,35,36,37,38,39,40,41,42,43,44
, 46,48,49,50,52,53,54,55 and 56} is a (40,4)-blocking set which is trivial since Ba
contains some lines of n© as shown in table (5). By theorem (1.14), there exists a
projective [17,3,13]7 code which is equivalent to the complete (17,4)-arc Ka.

2.3.5 The Construction of Complete (ks,3)-arc and the related projective [12,3,9]7
codes

We take the union of five conics Cy, C2 ,C3, C4 and Cs, then

Civ Cz o Cs v Cs U Cs=
{1,2,9,17,26,27,28,29,32,34,35,36,39,40,42,43,46,47,48,50,53,54,55 and 56}.

LetK=n-C1UC2uU C3zuU Cs U Cs={3,4,5,6,7,8,10,11,12,13,14,15,16,18,19,20,
21,22,23,24,25,30,31,33,37,38,41,44,45,49, 51,52 and 57}

The construction must satisfy the following:

(1) Kintersects every line in 7 in at most 3 points.
(2) Every point not in K is on at least one 3-secant of K.
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Thepoints:3,4,5,7,8,10,11,12,13,14,16,19,20,21,22,23,25,30,31,33,37,38 and
41,44are eliminated from K to satisfy (1), and the points 9, 26, 47 are added to K to
satisfy (2), then

Kz=Ku {9, 26, 47}\{3,4,5,7,8,10,11,12,13,14,16,19,20,21,22,23,25,30,31,33,37,
38,41,44}={6,9,15,18,24,26,45,47,49,51,52 and 57}is a complete (12,3)-arc as shown
in table (6), then

Bs=m-Ks={1,2,3,4,5,7,8,10,11,12,13,14,16,17,19,20,21,22,23,25,27,28,29,30,31,32,33,
34,35,36,37, 38,39,40,41,42,43,44,46,48,50,53,54,55 and 56} is a (45,5)-blocking set
which is a trivial since s contains some lines of t as shown in table (6). By theorem
(1.14), there exists a projective [12,3,9]7 code which is equivalent to the complete
(12,3)-arc Ka.

2.3.6 The Construction of Complete (kz,2)-arc and the related projective [6,3,4]7
codes

The construction must satisfy the following:

(1) The complete arc intersects every line in 7 in at most 2 points.
(2) Every point not in the arc is on at least one 2-secant of the arc.
To construct a complete K> arc, we eliminate the points 15,18,24,26,47,51 and 57
from K3 to satisfy (1), and add the point 4 to satisfy (2), then

K2 = Kz U {4}\{15,18,24,26,47,51 and 57} = {4,6,9,45,49 and 52}
is a complete (6,2)-arc as shown in table (7), then
Bs=m\ K>

= {1,2,3,5,7,8,10,...,44,46,47,48,50,51,53,...,57} is a (51,6)-blocking set which
is a trivial since Bs contains some lines of ©. By theorem (1.14), there exists a projective
[6,3,4]7 code which is equivalent to the complete (6,2)-arc Ko.

3. Conclusions:

1- We obtain five conics in PG(2,7).

2- We construct complete (k7,7)-arc by eliminating one conic, a (ks,6)-arc by
eliminating two conics, a (ks,5)-arc by eliminating three conics, a (ks,4)-arc by
eliminating four conics, a (ks,3)-arc by eliminating five conics. Note that in each step
we eliminate some points from each set and adding some points to the set such that the
set is a complete arc.

3- We construct projective [n,3,d]7 codes equivalent to each of these arcs..

Table (1)Points and Lines of PG(2,7)

i Pi {i

111 0 0] 2 9 16 23 30 37 44 51
210 1 0] 1 9 10 11 12 13 14 15
311 1 0 8 9 22 28 34 40 46 52
412 1 0| 5 9 19 29 32 42 45 55
513 1 0| 4 9 18 27 36 38 47 56
6|4 1 0] 7 9 21 26 31 43 48 53
715 1 0| 6 9 20 24 35 39 50 54
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816 1 0 3 9 17 25 33 41 49 57
910 0 1] 1 2 3 4 5 6 7 8
1011 0 1} 2 15 22 29 36 43 50 57
1112 0 1} 2 12 19 26 33 40 47 54
1213 0 1] 2 11 18 25 32 39 46 53
1314 0 1} 2 14 21 28 35 42 49 56
1415 0 1} 2 13 20 27 34 41 48 55
156 0 1| 2 10 17 24 31 38 45 52
160 1 1} 1 51 52 53 54 55 56 57
1711 1 1} 8 15 21 27 33 39 45 51
1812 1 1} 5 12 22 25 35 38 48 51
1913 1 1} 4 11 20 29 31 40 49 51
2004 1 1) 7 14 19 24 36 41 46 b5l
2115 1 1| 6 13 17 28 32 43 47 51
2216 1 1| 3 10 18 26 34 42 50 51
23]0 2 1y 1 30 31 32 33 34 3 36
2411 2 1| 7 15 20 25 30 42 47 52
2512 2 1| 8 12 18 24 30 43 49 55
2603 2 1| 6 11 22 26 30 41 45 56
2114 2 1| 5 14 17 27 30 40 50 53
2815 2 1| 3 13 21 29 30 38 46 54
29|16 2 1| 4 10 19 28 30 39 48 57
30]0 3 1} 1 23 24 25 26 27 28 29
31]/1 3 1| 6 15 19 23 34 38 49 53
3212 3 1| 4 12 21 23 32 41 50 52
33|]3 3 1| 8 11 17 23 36 42 48 54
3414 3 1| 3 14 22 23 31 39 47 55
3|5 3 1] 7 13 18 23 35 40 45 57
366 3 1| 5 10 20 23 33 43 46 56
3710 4 1] 1 44 45 46 47 48 49 50
38|1 4 1| 5 15 18 28 31 41 44 54
3912 4 1] 7 12 17 29 34 39 44 56
4013 4 1| 3 11 19 27 35 43 44 52
4114 4 1) 8 14 20 26 32 38 44 57
4215 4 1| 4 13 22 24 33 42 44 52
4316 4 1| 6 10 21 25 36 40 44 55
4410 5 1) 1 37 38 39 40 41 42 43
4511 5 1| 4 15 17 26 35 37 46 55
4612 5 1| 3 12 20 28 36 37 45 53
4713 5 1| 5 11 21 24 34 37 47 57
4814 5 1| 6 14 18 29 33 37 48 52
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49|15 5 1| 8 13 19 25 31 37 50 56
506 5 1] 7 10 22 27 32 37 49 54
5110 6 1| 1 16 17 18 19 20 21 22
5211 6 1| 3 15 16 24 32 40 48 56
5312 6 1| 6 12 16 27 31 42 46 57
5413 6 1| 7 11 16 28 33 38 50 55
514 6 1| 4 14 16 25 34 43 45 54
5|5 6 1| 5 13 16 26 36 39 49 52
576 6 1| 8 10 16 29 35 41 47 53
Table (2)

i Kz i BN L

1 | {37} {2,9,16,23,30,44 51}

2 |{1,10,11,12,13.14,15} | {9}

3 | {22,28,34,46,52} {8,9,40}

4 | {5.19,29.32,42,4555} | {9}

5 | {4,18,27,36,38,47,56} | {9}

6 |{7.21,2631,4353} | {9,48}

7 1{6.24,39,50,54} £9,20,35}

8 | {3,17,2533,41} £9,49,57}

9 |{134567} 2,8}

10 | {15,22,29,36,43.50} | {2,57}

11 | {12,19.26,33.47,54} | {2,40}

12 | {11,18,25,32,39,46,53} | {2}

13 | {14,21,28,42,56} £2,3549}

14 | {13,27,34,41,55} £2,20,48}

15 | {10,17,24,31,38,45,52} | {2}

16 | {1,52,53,54,5556} | {51,57}

17 | {15,21,27,3339,45} | {8,51}

18 | {5,12,22,25,38} {3548 51}

19 | {4,11,29,31} £20,40,49,51}

20 | {7,14,19,24,36,41,46} | {51}

21 | {6,13,17,28,32,43,47} | {51}

22 | {3,10,18,26,34,42,50} | {51}

23 | {1,31,32,33,34,36} | £30.,35}

24 | {7,15,2542,4752% | {20,30}

25 | {12,18.24,43 55} £8,30,49}

26 | {6,1,22,26,41,4556} | {30}

27 [{514,17,275053} | {30,40}

28 | {3,13,21,29,38.46,54} | {30}

29 | {4,10,19,28,39} £30,48,57}

30 | {1,24,2526,27,28.29} | {23}

31 | {6,15,10,34,3853} | {23.49}

32 | {4.12,21,32,41,50,52} | {23}

33 | {11,17,36.42,54} £8,03.48}
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34

{3,14,22,31,39,47,55}

{23}

35

{7,13,18,45}

{23,35,40,57}

36

{5,10,33,43,46,56}

{20,23}

37

{1,45,46,47,50}

{44,48,49}

38

{5,15,18,28,31,41,54}

{44}

39

{7,12,17,29,34,39,56}

{44}

40

{3,11,19,27,43,52}

{35,44}

41

{14,26,32,38}

{8,20,44,57}

42

{4,13,22,24,33,42,53}

144}

43

{6,10,21,25,36,55}

{40,44}

44

{1,37,38,39,41,42,43}

140}

45

{4,15,17,26,37,46,55}

135}

46

{3,12,28,36,37,45,53}

{20}

47

{5,11,21,24,34,37 47}

157}

48

{6,14,18,29,33,37,52}

{48}

49

{13,19,25,31,37,50,56}

18}

50

{7,10,22,27,32,37,54}

{49}

51

{1,17,18,19,21,22}

{16,20}

52

{3,15,24,32,56}

{16,40,48}

53

{6,12,27,31,42,46}

{16,57}

54

{7,11,28,33,38,50,55}

116}

55

{4,14,25,34,43,45 54}

{16}

56

{5,13,26,36,39,52}

{16,49}

57

{10,29,41,47,53}

{8,16,35}

Table (3)

Ke M L

B2 &

{51}

{2,9,16,23,30,37,44}

{11,12,13,14,15}

{1,9,10}

{22,34,46,52}

{8,9,28,40}

{32,45,55}

{5,9,19,29,42}

{18,27,38,47}

{4,9,36,56}

{7,21,26,31,43,53}

{9,48}

{6,20,24,35,50,54}

{9,39}

O INO OB WIN|F-

{3,25,33,41,49,57}

{9,17}

{3,6,7}

{1,2,4,5,8}

{15,22,43,50,57}

12,2936}

{12,26,33,47,54}

{2,19,40}

{11,18,25,32,46,53}

{2,39}

{21,35,49}

{2,14,28,42 56}

{13,20,27,34,41,55}

{2,48}

{24,31,38,45,52}

{2,10,17}

{51,52,53,54,55,57}

{1,56}

{15,21,27,33,45,51}

{8,39}

{12,22,25,35,38,51}

{5,48}

{11,20,31,49,51}

{4,29,40}

{7,14,24,41,46,51}

{19,36}
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21 | {6,13,32,43,47,51} | {17,28}
22 | {3,18,26,34,50,51} | {10,24}
23 | {31,32,33,34,35} {1,30,36}
24 | {7,15,20,25,47,52} | {30,42}
25 |12,18,24,43,49,55} | {8,30}
26 | {6,11,22,26,41,45} | {30,56}
27 | {5,14,27,50,53} {17,30,40}
28 | {3,13,21,38,46,54} | {29,30}
29 | {57} {4,10,19,28,30,39,48}
30 | {24,25,26,27} {1,23,28,29}
31 | {6,15,34,38,49,53} | {19,23}
32 | {12,21,32,41,50,52} | {4,23}
33 | {11,54} {8,17,23,36,42,48}
34 | {3,14,22,31,47,55} | {23,39}
35 | {7,13,18,35,45,57} | {23,40}
36 | {20,33,43,46} {5,10,23,56}
37 | {4546,47,4950% | {1,44,48}
38 | {15,18,31,41,54} {5,28,44}
39 | {7,21,34} {17,29,39,44,56}
40 | {3,11,27,35,43,52} | {19,44}
41 | {14,20,26,32,38,57} | {8,44}
42 | {13,22,24,33,53} {4,42,44}
43 | {6,21,25,55} {10,36,40,44}
44 | {38,41,43} {1,37,39,40,42}
45 | {15,26,35,46,55} {4,17,37}
46 | {3,12,20,45,53} {28,36,37}
47 | {11,21,24,34,47,57} | {5,37}
48 | {6,14,18,33,52} {29,37,48}
49 | {13,25,31,50} {8,19,37,56}
50 | {7,22,27,32,49,54} | {10,37}
51 | {18,20,21,22} {1,16,17,19}
52 | {3,15,24,32} {16,40,48,56}
53 | {6,12,27,31,46,57} | {16,42}
54 | {7,11,3338,50,55} | {16,28}
55 | {14,25,34,43,45,54} | {4,16}
56 | {13,26,49,52} {5,16,36,39}
57 | {35,41,47,53} {8,10,16,29}
Table (4)
Ks N & Bs N &
1 | {30,44} {2,9,16,23,37,51}
2 1{10,12,13,14} {1,9,11,15}
3 | {22,46} {8,9,28,34,40,52}
4 | {19,32,45,55} {5,9,29,42}
5 1{4,27,38,47,56} | {9,18,36}
6 |{21,31,43,53} {7,9,26,48}

34
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7 1{35} {6,9,20,24,39,50,54}
8 | {17,2541,49,57} | {3,9,33}

9 | {4} {1,2,35,6,7,8}
10 | {22,43,57} {2,15,29,36,50}
11 | {12,19,47} {2,26,33,40,54}
12 | {25,32,46,53} | {2,11,18,39}

13 | {14,21,35,49,56} | {2,28,42}

14 | {13,27,4155} | {2,20,34,48}

15 | {10,17,31,38,45} | {2,24,52}

16 | {53,55,56,57% | {1,51,52,54}

17 | {21,27,45} {8,15,33,39,51}
18 | {12,22,25,35,38} | {5,48,51}

19 | {4,31,49} {11,20,29,40,51}
20 | {14,19,41,46} | {7,24,36,51}

21 | {13,17,32,43,47} | {6,28,51}

22 | {10} {3,18,26,34,42,50,51}
23 1{30,31,32,35} | {1,33,34,36}

24 | {25,30,47} {7,15,20,42,52}
25 | {12,30,43,49,55} | {8,18,24}

26 | {22,30,41,45,56} | {6,11,26}

27 | {14,17,27,30,53} | {5,40,50}

28 | {13,21,30,38,46} | {3,29,54}

29 |{4,10,19,30,57} | {28,39,48}

30 | {25,273 {1,23,24,26,28,29}
31 [{19,38,49,53} | {6,15,23,34}

32 |{14,12,21,32,41} | {23,50,52}

33 {17} {8,11,23,36,42,48,54}
34 | {14,22,31,47,55} | {3,23,39}

35 |{13,354557} | {7,18,23,40}

36 | {10,43,46,56} | {5,20,23,33}

37 | {44,45,46,47,49} | {1,48,50}

38 | {31,41,44} {5,15,18,28,54}
39 [{12,17,4456} | {7,29,34,39}

40 | {19,27,35,43,44} | {3,11,52}

41 |{14,32,38,44,57} | {8,20,26}

42 | {4,13,22,4453} | {24,33,42}

43 [10,21,25,44,55} | {6,36,40}

44 | {38,41,43} {1,37,39,40,42}
45 | {4,17,35,46,55} | {15,26,37}

46 | {12,4553} {3,20,28,36,37}
47 [ {21,4757} {5,11,24,34,37}
48 | {14} {6,18,29,33,37,48,52}
49 |{13,19,25,31,56} | {8,37,50}

50 | {10,22,27,32,49} | {7,37,54}

51 | {17,19,21,22% | {1,16,18,20}

52 | {32,56} {3,15,16,24,40,48}
53 | {12,27,31,46,57} | {6,16,42}
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54 | {38,55} {7,11,16,28,33,50}
55 | {4,14,25,43,45} | {16,34,54}
56 | {13,49} {5,16,26,36,39,52}
57 | {10,35,41,47,53} | {8,16,29}
Table (5)
i Ksndi Ba L
1 | {51 {2,9,16,23,30,37,44}
2 [{10,12,13,14} |{1,9,11,15}
3 |{8,34} {9,22,28,40,46,52}
4 | {19,45} {5,9,29,32,42,55}
5 | {447} {9,18,27,36,38,56}
6 | {31} {7,9,21,26,43,48,53}
7 | {20,243 {6,9,35,39,50,54}
8 | {3357} {3,9,17,25,41,49}
9 |{48} {1,2,35,6,7}
10 | {57} {2,15,22,29,36,43,50}
11 [ {12,19,33,47r | {2,26,40,54}
12 1 ¢ {2,11,18,25,32,39,46,53}
13 | {14} {2,21,28,35,42,49,56}
14 | {13,20,34} {2,27,41,48 55}
15 |{10,24,31,45} | {2,17,38,52}
16 | {5157} {1,52,53,54,55,56}
17 | {8,33,45,51} {15,21,27,39}
18 | {12,51} {5,22,25,35,38,48}
19 | {4,20,31,51} {11,29,40,49}
20 |{14,19,2451} |{7,36,41,46}
21 | {13,47,51} {6,17,28,32,43}
22 | {10,34,51} {3,18,26,42,50}
23 | {31,33,34} {1,30,32,35,36}
24 | {2047} {7,15,25,30,42,52}
25 | {8,12,24} {18,30,43,49,55}
26 | {45} {6,11,22,26,30,41,56}
27 | {14} {5,17,27,30,40,50,53}
28 | {13} {3,21,29,30,38,46,54}
29 | {4,10,19,57} {28,30,39,48}
30 | {23,24} {1,25,26,27,28,29}
31 | {19,23,34} {6,15,38,49,53}
32 {41223} {21,32,41,50,52}
33 | {8,23} {11,17,36,42,48,54}
34 | {14,23,31,47} {3,22,39,55}
35 | {13,23,45,57} | {7,18,35,40}
36 | {10,20,23,33} {5,43,46,56}
37 | {4547} {1,44,46,48,49,50}
38 | {31} {5,15,18,28,41,44,54}
39 | {12,34} {7,17,29,39,44 56}
40 | {19} {3,11,27,35,43,44,52}
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41 ] {8,14,20,57} {26,32,38,44}
42 14{4,13,24,33} {22,42,44,53}
43 | {10} {6,21,25,36,40,44,55}
44 1 ¢ {1,37,38,39,40,41,42,43}
45 | {4} {15,17,26,35,37,46,55}
46 | {12,20,45} {3,28,36,37,53}
47 | {24,34,4757} | {5,11,21,37}
48 | {14,33} {6,18,29,37,48,52}
49 |{8,13,19,31} {25,37,50,56}
50 | {10} {7,22,27,32,37,49,54}
51 | {19,20} {1,16,17,18,21,22}
52 | {243} {3,15,16,32,40,48,56}
53 | {12,31,57} {6,16,27,42,46}
54 | {33} {7,11,16,28,38,50,55}
55 | {4,14,34,45} {16,25,43,54}
56 | {13} {5,16,26,36,39,49,52}
57 | {8,10,47} {16,29,35,41,53}
Table (6)
i Kz i Bs N Li
1 | {9,551} {2,16,23,30,37,44}
2 | {9,15} {1,10,11,12,13,14}
3 | {9,25} {8,22,28,34,40,46}
4 | {9,45} {5,19,29,32,40,46}
5 |{9,18,47} {4,27,36,38,56}
6 | {9,26} {7,21,31,43,48,53}
7 |{6,9,24} {20,35,39,50,54}
8 |{9,4957} {3,17,25,33,41}
9 |{6} {1,2,3,45,7,8}
10 | {15,557} {2,22,29,36,43,50}
11 | {2647} {2,12,19,33,40,54}
12 | {18} {2,11,25,32,39,46,53}
13 | {49} {2,14,21,28,35,42,56}
14 | ¢ [2,13,20,27,34,41,48,55}
15 | {24,45,52} {2,10,17,31,38}
16 | {51,52,57} {1,53,54,55,56}
17 | {15,45,51} {8,21,27,33,39}
18 | {51} {5,12,22,25,35,38,48}
19 | {49,51} {4,11,20,29,31,40}
20 | {24,51} {7,14,19,36,41,46}
21 | {6,47,51} {13,17,28,32,43}
22 | {18,26,51} {3,10,34,42 50}
23 | ¢ {1,30,31,32,33,34,35,36}
24 |{15,47,52} {7,20,25,30,42}
25 | {18,24,49} {8,12,30,43,55}
26 | {6,26,45} {11,22,30,41,56}
27 | ¢ {5,14,17,27,30,40,50,53}
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28 | ¢ {3,13,21,29,30,38,46,54}
29 | {57} {4,10,19,28,30,39,48}
30 | {24,26} {1,23,25,27,28,29}
31 | {6,15,49} {19,23,34,38,53}
32 | {52} {4,12,21,23,32,41,50}
3 | o {8,11,17,23,37,42,48,54}
34 | {47} {3,14,22,23,31,39,55}
35 | {18,45,57} {7,13,23,35,40}
36 | o {5,10,20,23,33,43,46,56}
37 | {45,47,49} {1,44,46,48,50}
38 | {15,18} {5,28,31,41,44,54}
39 | o [7,12,17,29,34,39,44,56}
40 | {52} {3,11,19,27,35,43,44}
41 | {26,57} {8,14,20,32,38,44}
42 | {24} {4,13,22,33,42,44,53}
43 | {6} {10,21,25,36,40,44,55}
44 | ¢ {1,37,38,39,40,41,42,43}
45 | {15,26} {4,17,35,37,46,55}
46 | {45} {3,12,20,28,36,37,53}
47 | {24,47,57} {5,11,21,34,37}
48 | {6,18,52} {14,29,33,37,48}
49 | ¢ {8,13,19,25,31,37,50,56}
50 | {49} {7,10,22,27,32,37,54}
51 | {18} {1,16,17,19,20,21,22}
52 | {15,24} {3,16,32,40,48,56}
53 | {6,57} {12,16,27,31,42,46}
54 1¢ {7,11,16,28,33,38,50,55}
55 | {45} {4,14,16,25,34,43,54}
56 | {26,49,52} {5,13,16,36,39}
57 | {47} {8,10,16,29,35,41,53}
Table (7)

i K2 i Bs N i
1 1{9% {2,16,23,30,37,44,51}
2 | {9} {1,10,11,12,13,14,15}
3 [ {952} {8,22,28,34,40,46}
4 | {9,45} {5,19,29,32,42,55}
5 {49} {18,27,36,38,47,56}
6 | {9 {7,21,26,31,43,48,53}
7 | {6,9} {20,24,35,39,50,57}
8 {949} {3,17,25,33,41,57}
9 | {46} {1,2,3,5,7,8}
10 | ¢ {2,15,22,29,36,43,50,57}
11 | ¢ {2,12,19,26,33,40,47,54
12 | ¢ {2,11,18,25,32,39,46,53}
13 | {49} {2,14,21,28,35,42,56}
14 | ¢ {2,13,20,27,34,41,48,55}
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15 |[45,52} {2,10,17,24,31,38}
16 | {52,57} {1,51,53,54,55,56}
17 | {45} {8,15,21,27,33,39,51}
18 | ¢ {5,12,22,25,35,38,48 51}
19 | {4,49} {11,20,29,31,40,51}
20 (0] {7,14,19,24,36,41,46,51}
21 | {6} {13,17,28,32,43,47,51}
22 | ¢ {3,10,18,26,34,42,50,51}
23 | ¢ {1,30,31,32,33,34,35,36}
24 | {52} {7,15,20,25,30,42,47}
25 | {49} {8,12,18,24,30,43,55}
26 | {6,45} {11,22,26,30,41,56}
27 1 ¢ {5,14,17,27,30,40,50,53}
28 | ¢ {3,13,21,29,30,38,46,54}
29 | {4} {10,19,28,30,39,48,57}
30 | ¢ {1,23,24,25,26,27,28,29}
31 | {6,49} {19,15,23,34,38,53}
32 | {452} {12,21,23,32,41,50}
33 (0] {8,11,17,23,37,42,48,54}
34 |6 {3,14,22,23,31,39,47,55}
35 | {45} {7,13,18,23,35,40,57}
36 | o {5,10,20,23,33,43,46,56}
37 | {45,49} {1,44,46,47 48,50}
38 | o {5,15,18,28,31,41,44,54}
39 | o {7,12,17,29,34,39,44,56}
40 | {52} {3,11,19,27,35,43,44}
41 |1 ¢ {8,14,20,26,32,38,44,57}
42 | {4} {13,22,24,33,42,44,53}
43 | {6} {10,21,25,36,40,44,55}
44 (0] {1,37,38,39,40,41,42,43}
45 | {4} {15,17,26,35,37,46,55}
46 | {45} {3,12,20,28,36,37,53}
47 1 o {5,11,21,24,34,37,47,57}
48 | {6,52} {14,18,29,33,37,48}
49 | ¢ {8,13,19,25,31,37,50,56}
50 | {49} {7,10,22,27,32,37,54}
51 | ¢ {1,16,17,18,19,20,21,22}
52 | ¢ {3,15,16,24,32,40,48,56}
53 | {6} {12,16,27,31,42,46,57}
54 | ¢ {7,11,16,28,33,38,50,55}
55 | {4,45} {14,16,25,34,43 54}
56 | {49,52} {5,13,16,26,36,39}
57 | ¢ {8,10,16,29,35,41,47,53}
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