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ABSTRACT 

A ring R is said to be generalized right simple singular AP-injective, if for any 

maximal essential right ideal M of R and for any bM, bR/bM is AP-injective. We shall 

study the characterization and properties of  this class of rings. Some interesting results 

on these rings are obtained. In particular, conditions under  which generalized simple 

singular AP-injective  rings are weakly regular rings, and Von Neumann regular rings.  
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 الملخص
إذا كان كل مثالي أعظمي   AP–بأنها حلقة بسيطة منفردة معممة وغامرة من النمط  Rيقال للحلقة 

. قمنا بدراسة مميزات وخواص هذا  AP -غامر من النمط  bR/bMفان  bMولكل   Rفي  Mأساسي أيمن 
   AP–الصنف من الحلقات. بصورة عامة, ما هي الشروط  للحلقة البسيطة المنفردة المعممة والغامرة من النمط 

 م فون نيومان.لكي تكون حلقة منتظمة بضعف وحلقة منتظمة حسب مفهو 

, حلقات فون   R, الحلقات المستمرة بضعف, السكوكل لـ AP –الحلقات الغامرة من النمط  الكلمات المفتاحية :
 نيومان.

1. Introduction: 

Throughout this paper, R is an associative ring with identity, and R-module is 

unital. For a  R, r(a) and l(a) denote the right annihilator and the left annihilator of  a, 

respectively. We write J(R), Y(R)(Z(R)), N(R) and Soc(RR) for the Jacobson radical, the 

right ( left ) singular ideal, the set of nilpotent elements and right socle of R, 

respectively. X ≤ M denoted that X is a submodule of module M. 

 Recall  that a ring R is called right MC2-ring if eRa=0 implies aRe=0, where a, 

e2 = e R and eR is minimal right ideal of R[8]. A ring R is Von Neumann (weakly) 

regular provided that for every aR there exists bR (b RaR) such that a=aba (a=ab 

resp.). Recall that a ring R is right (left) weakly continuous if J(R)=Y(R) ( J(R) = Z 

(R)), R / J(R) is regular and idempotent can be left module J(R)[5]. Clearly every 

regular ring is right (left) weakly continuous. A ring R is called zero commutative 

(briefly ZC-ring )if ab=0 implies ba=0, a,b R[1]. A right R-module M is principally 

injective (briefly P-injective), if for any principal right ideal aR of R and any right R-

homomorphism of aR into M can be extended to one of R into M[11]. The ring R is 

called right P-injective if RR is P-injective. 

2. Generalized Simple Singular AP-injective Rings 
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 Recall that a module MR with S=End(MR) is said to be almost principally 

injective (briefly AP-injective), if for any aR, there exists an S-submodule Xa of M 

such that lM(rR(a))=Ma Xa as left S-module[6]. AP-injectivety has been studied by 

many authors (see [9,10]). Actually, Zhao Yu-e [12] investigated some properties of 

rings whose simple singular right R-module is AP-injective. Now, we give a generalized 

AP-injective. 

 

Definition 2.1: 

 A ring R is called a generalized right (left) simple singular AP-injective, if for 

any maximal essential right (left) ideal M of R, any bM, bR/bM (Rb/Mb) is AP-

injective. 

 The following lemma which is due to Zhao Yu-e [12], plays a central role in 

several of our proofs 

Lemma 2.2:  

 Suppose M is a right R-module with S=End(MR). If lMrR(a)=MaXa, where Xa is 

left S-submodule of MR. Set f: aR→M is a right R-homomorphis, then f(a)= ma+x with 

mM, xXa. 

Lemma 2.3: 

 If M is a maximal right ideal of R and r(a)  M with a  M, then 

1- aR ≠ aM  

2- R/M  aR/aM . 

Proof: 

(1) If aR = aM, then a = ay for some y in M, which implies that 1-y  r(a)  M, whence 

1 M, contradicting M ≠ R.  

(2) From (1) aR ≠ aM, then the right R- homomorphism g:R/M→aR/aM is defined by 

g(r+M) = ar+aM for all rR implies that R/M  aR/aM. ■ 

 We start this section with the following results. 

Proposition 2.4: 

 Let R be generalized right simple singular AP-injective ring, then 

1- J(R)  Y(R) = 0 

2- Soc(RR) Y(R) = 0 

Proof : 

(1) Let a J(R)  Y(R). If a ≠ 0, then r(a)≠R and RaR + r(a) is an essential right ideal of 

R. We shall prove that RaR +r(a) = R. If not, there exists a maximal essential right 

ideal M containing RaR +r(a). Since r(a) M and a  M, then by Lemma 2.3 R/M  

aR/aM. Therefore, R/M is AP-injective and lR/Mr(a)= (R/M)a  Xa, Xa≤ R/M. Let 

f:aR→R/M defined by f(ar) = r +M for all r  R. Note that f is a well-defined and by 

Lemma 2.2  1 + M = f(a) = ba + M +x, b  R, x  Xa. Hence 1– ba + M = x  R/M 

 Xa = 0, so 1-ba  M. Since a J(R), then ba J(R)M and hence 1 M, which is 

a contradiction. Therefore J(R)  Y(R) = 0. 

(2) Let k Soc(RR) Y(R). If k≠ 0, then kR is a minimal right ideal and r(k) is an 

essential right ideal of R. Since every minimal one –sided ideal of R is either 

nilpotent or direct summand of R [8]. Thus, if (kR)2 ≠ 0, then kR is a direct 

summand and hence r(k) is also direct summand which is a contradiction. If      
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(kR)2 =0, then k2 = 0 and k  r(k). But r(k) is maximal essential right ideal of R. 

Therefore, by Lemma 2.3 R/r(k)k(r(k)). Hence, R/r(k) is AP-injective, so there 

exists cR and xXa as a proof (1) such that 1-ck r(k). Since, ck RkRr(k), then 

1r(k). This is also contradiction, therefore Soc(RR) Y(R) = 0.  ■ 

Following [7], for a prime ideal P of a ring R, we put Op={aP: ab=0 for some bR\P}.  

In general, OP not subset of a prime ideal P. as the following example shows.  

Example [2]: 

Let R be a ring of 2×2 matrices over a field F. Then, 
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Theorem 2.5: 

Let P be a prime ideal of a generalized right simple singular AP-injective ring 

with OP  P, then P is maximal. 

Proof : 

  We claim that RaR + P = R for aR/P. if not, there exists a maximal ideal M of 

R containing RaR+ P. Moreover, M  is a maximal right ideal of R. Suppose not, then 

there exists a maximal right ideal K of R such that M  K. If K is not essential in R. 

Then K is a direct summand of R, so we can write K=r(e) for some 0≠e=e2R. Then, 

ea=0, since eP, then a  OP P. Therefore, K must be essential right ideal of R. 

 Now, suppose that aR=aK, then a=ac for some c K that implies a(1-c)= 0. 

Since, aP, then 1-cOP  P  K which is a contradiction. If aR≠aK, the right R-

homomorphism g: R/K→ aR/aK is defined by g(b+K)=ab+aK for all bR which 

implies that R/KaR/ak. Therefore, R/K is AP-injective . Let f:aR→R/K be defined by 

f(ar)= r+K for all rR. So by Lemma 2.2 f(a)= ca+K+x, xXa. Hence, 1-

ca+K=xR/K Xa =0 , so 1-ca K whence 1K. Therefore, M is a maximal essential 

right ideal of R. So by the same method in the above proof P is a maximal of R. ■ 

 Recall that R is called 2-Primal if its prime radical P(R) concedes with the set 

N(R) [7]. Kim and Kwak [3] showed that if R is a 2-primal, then OP  P for each prime 

ideal of R.   

Corollary 2.6: 

 Let R be 2-primal generalized right simple singular AP-injective ring, then every 

prime ideal of R is maximal. ■ 

Proposition 2.7: 

Let R be ZC-generalized simple singular AP-injective rings, then for any a,b  

R with ab=0, then r(a) + r(b) = R. 

Proof: 

 Suppose that ab=0 and r(a) + r(b)  R. Then, there exists a maximal right ideal 

M containing r(a) + r(b). If M not essential, then there exists  0 e = e2  R such that 

M=r(e). Since br(a)  M= r(e)=l(e), then be=0 which implies that er(b)  M = r(e), 

so that e = e2 = 0 which is  a contradiction. Therefore, M must be essential. 

 Since, r(a)  M and a M , then by Lemma 2.3 R/ M  aR / aM. Therefore R / 

M is AP-injective. Let f:aR→R/M is defined by f( ar ) = r+M for all r  R. Note that f is 
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well-defined and by Lemma 2.2  1+ M = f( a ) = ca + M +x, c  R, x  Xa. Hence, 1 – 

ca + M = xR/M  Xa=0, so 1-ca  M. Since, a  r(b) and R is ZC- ring, then ca  

r(b)  M whence 1M which is  a contradiction. Therefore, r(a) + r(b) = R.  ■ 

3. The Connection between Generalized Simple Singular AP-injective and Other   

     Rings 

 In this section, we give the connection between Von Neumann regular rings and 

generalized simple singular AP-injective rings. 

Theorem 3.1: 

 Let R be right MC2-generalized right simple singular AP-injective, then R is 

right weakly regular ring. 

Proof: 

We will show that RaR + r(a) = R for any a  R. Suppose that there exists b  R 

such that RbR + r(b) ≠ R. Then, there exists a maximal right ideal M of R containing 

RbR + r(b). If M not essential, then M is a direct summand of R. So, we can write 

M=eR for some 0 ≠ e =e2 R. Thus, (1-e)Rb= 0, since R is MC2 and (1-e)R is minimal, 

then bR(1-e) = 0. Hence, (1-e)  r(b)  M, so 1  M. It is a contradiction. Therefore, M 

must be essential right ideal of R. 

Since, r(a)  M and a M, then by Lemma 2.3  R/ M  aR / aM. Therefore, R / 

M is AP-injective. Let f:bR→R/M defined by f( br ) = r +M for all r  R. Note that f is 

well-defined and by Lemma 2.2, 1+M=f(b) = cb + M +x, c  R, x  Xb. Hence, 1 – cb 

+ M = x  R/M  Xb = 0, so 1-cb  M. Since, cb RbR  M, then 1  M which is a 

contradiction. Therefore, that RaR + r(a) = R for all a  R. Hence, R is a right weakly 

regular ring.  ■ 

 Now, we shall prove the main results of this section. 

Theorem 3.2: 

 Let R be a ring, then the following statements are equivalent: 

(1) R is Von Neumann regular. 

(2) R is generalized right simple singular AP-injective right weakly continuous. 

Proof : 

(1)    (2) It is clear. 

(2)    (1) Suppose that Y(R) ≠ 0. Then, there exists a non-zero element a  Y(R) such 

that a2 =0. We claim that Y(R) + r(a) =R. If not, there exists a maximal essential right 

ideal M containing Y(R) + r(a). Since, r(a)  M and a M , then by Lemma 2.3 R/ M  

aR / aM. Therefore, R/M is AP-injective and lR/Mr(a)=(R/M)a  Xa, Xa ≤R/M. Let 

f:aR→R/M be defined by f( ar ) = r +M for all r  R. Note that f is well-defined and by 

Lemma 2.2,  1 + M = f( a ) = ba + M +x, b  R, x  Xa. Hence, 1 – ba + M = x  R/M 

 Xa = 0, so 1-ba  M. Since, a  Y(R) = J(R) implies that ca  J(R)  M and 1  M, 

which is a contradiction. Therefore, Y(R) + r(a) =R. Thus, we can write 1= c + d, for 

some cY(R) and d  r(a) . Thus, a=ca and so (1-c)a = 0. Since c  Y(R) = J(R), 1-c is 

invertible. Thus a=0 contradicting a ≠ 0. Therefore, Y(R)=0.  ■ 

Lemma 3.3: [4] 

 For any a  Cent( R ), if a=ara for some r  R, then there exists bCent( R ) 

such that a=aba ( where Cent(R) is the center of R). 

Theorem 3.4: 
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R is right non-singular generalized right simple singular AP-injective, then 

Cent(R)  is Von Neumann regular ring. 

 

Proof: 

 First, we have to prove Cent(R) is reduced . Let 0  a Cent(R) and a2=0 

implies that a r(a) .If r(a) is essential, then aY(R)=0 implies that a=0 .We are done . 

If r(a) not essential ,there exists a non-zero right ideal I in R such that r(a)  I=0.Then, 

Ia I r(a) [a Cent(R) ] but Ir(a)=0 implies that Ia=0 and we get I l(a)=r(a) so I=0 

contradiction. Therefore, a=0 ,so Cent(R) is a reduced ring . Now, we shall show that 

aR+r(a)=R for any a Cent(R) .If not ,there exists a maximal right ideal M of R such 

that aR+r(a) M observe that M is an essential right ideal of R. If not, then M is a direct 

summamd of R . So, we can write M=r(e) for some 0 e=e2 R. Since, a M and a 

Cent(R), ae=ea=0. Thus, er(a) M=r(e), whence  e=0 . It is a contradiction. Therefore, 

M must be an essential right ideal of R. 

Since, r(a)  M and a M , then by Lemma 2.3  R/ M  aR / aM. Therefore, R / 

M is AP-injective. Let f:aR→R/M defined by f( ar ) =r +M for all r  R. Note that f is 

well-defined and by Lemma 2.2,  1+M= f( a ) = ca + M +x, c  R, x  Xa. Hence, 1 – 

ca + M = x  R/M  Xa = 0, so 1-ca  M since, a  cent(R), then ca = ac  M, and 

hence 1  M. Therefore, aR + r(a) = R for all a cent(R) and so we have a = ara for 

some rR. Applying Lemma 3.3, Cent( R) is Von Neumann regular ring.  ■ 
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