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ABSTRACT
In this paper, we will find the numerical solution of Gray-Scott model in two
dimensions space, this method is a system of non-linear parabolic partial differential equations.
Then transforming the original model (system of non-linear PPDES), by using the method of
lines to a system of ODEs. Therefore we used Runge-Kutta methods (Explicit RK method and
Implicit RK method) to find the numerical solutions of the new systems, and we compared
between these methods, we saw that the numerical results of IRK methods is more accurate than
the numerical results of ERK method.
Keywords: Gray-Scott model in two dimensions, finite difference methods, Method of lines,
Explicit Runge Kutta method , Implicit Runge Kutta method.
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1. Introduction:

Many physical, chemical and engineering problems, mathematically, can be
modeled in the form of system of partial differential equations or system of ordinary
differential equations. Parabolic PDEs (partial differential equations) describe
practically useful phenomena such as transport-chemistry problems of the advection-
diffusion-reaction type and problem of this type play an important role in the modeling
of pollution of the atmosphere, ground water and surface water [9].

Khaddaj and Liddell [6] discussed the numerical solution of time-dependent
partial differential equations (PDEs) by the numerical method of lines (NMOL)
transporter based systems. Parallel methods for the solution of systems of ordinary
differential equations (ODEs) are considered. Algorithms based on the NMOL are
parallel ODEs solver are presented.

Celi, R [4] used the method of lines to apply on the equations of helicopter rotor
vortex wakes, and converts the governing PDEs into a system of ODEs. These ODEs
can then be coupled to other ODEs modeling helicopter dynamics, for time-marching
simulations are to extract linearized models. The MOLs is applied to a simplified set of
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wake equations that has an analytical solution. Because these simplified equations
neglect key wake physics, the study is only a first step toward applying MOLs to
realistic models. Therefore, the conclusions only apply to the simplified problem
considered. He shows that the results of the MOLs are a suitable method to formulate
vortex wake models in state-space form. The solutions are accurate and numerically
stable. Refining the space discretization increases the stiffness of the ODEs, but explicit
solvers can still be used.

Asher et. al. [1] show that the implicit- explicit Range-Kutta schemes are strictly
related which provides a framework for the derivation of more general, accurate and
efficient schemes.

Minion [10] used method of Lines on PDEs, and then semi- implicit formulation
of the method of spectral deferred corrections for ODEs with both stiff and non-stiff
terms.

Butcher [3] has developed many types of implicit Rung-Kutta method to reduce
storage space and getting more accurate solution.

In this paper we find the numerical solution of system of non-linear PPDEs by
transforming the non-linear PPDE to a system of non-linear ordinary differential
equation and then using Explicit and implicit Rung-Kutta methods. We use the NMOLs
to transform the system of parabolic partial differential equations (PPDES) into a
systems of ODEs, ([6], [7]), and then we study the properties of the numerical solution
of IVPs in ODEs. Also we recall the basic definitions and theories that concern
numerical solution of IVPs in ODEs.

2. The Gray-Scott Model Problem in Two Dimensions

Reaction-diffusion models of chemical species can produce a variety of patterns,
reminiscent of those often seen in nature. The Gray-Scott equations model can be
consider as reaction. Numerical simulations of this model were performed in an attempt
to find stationary lamellar patterns like those observed in earlier laboratory experiments
on ferrocyanideiodate-sulphite reactions [13]. The chemical reactions for this situation
are described by

U+2V -3V,
V—>P,

where U, V and P are chemical species. The system of reaction-diffusion equations for
this situation is given by

2 2
u, =al(8—u+a—uj—uv2 +f(1-u),

ox> oy’
o’v o'
v, =a2(y+yj+ uv? —(f +g)v.

where u and v are concentrations of two reactions, aland o, are the diffusion rates in

the process, g represents the rate of conversion of V to P, and f the rate of the process
that feeds U and drains U, V and P ([14], [12]).

We choose the model parameters as o, =8x10°, o, =4x10°, f = 0.02 and
g = 0.066 to get the model showed in equations (1) and (2)

From pattern formation the following reaction diffusion system ([15], [5])
exhibits complicated Solution behavior:
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2 2

%:a{%+%}—uvz+0.02(l—u), (1)
2 2

%:a{%+%J+uvz—0.086v. )

where 01=8x107° and a,=4x10"°
The initial conditions are

U(X,y1o):l ’ 0 S X ay S 1’
v(x,y,0)=1 , 0<x,y<1,

on the spatial domain [0,1]x[0,1].

In this model self-replicating spots have been observed. These are regions in which
the (chemical) concentrations of some of the species exhibit large amplitude
perturbations from a surrounding homogenous state.

3. Runge-Kutta Methods Solution for ODEs
The general form of s-stage Runge-Kutta method [3] can be written as

U,,=u, +hg(t, ,u,,h), n>0 ...(3)
where
¢(tn’un!h)zzbi K ...(4)
i=1
k, = f(tn+cih,un+h2aij kj],j=1,2,...,s ...(5)
j=1
where s represents the number of stage for the method ci, a, bi, i,j=,2,...,s are
parameters.
The windows form of the method is

C, a; &y - &g

C, Ay 8y o Ay

: : oo C ‘ A ...(6)

Cn asl asZ ass = ‘ bT

b, b, - b
where ¢, => a;, > b, =1[3].
j=1 i=1
If the coefficients aj; are equal to zero for j>i then each kj can be explicitly
computed in term of the (i-1) coefficients ki, ..., kj-z and in this case the explicit RK
method equation (5) becomes:
i-1
k= f(t,+chu,+h> a k), i=12,.s ()
j=1
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If k, =hf (t, +chu, +h>a k), i=12,.,5 ...(8)
=1

and the function k; are defined by a set of simplicity equations then RK method is said
to be full IRK method ([2],[3]).

4. The Method of Lines:

The method of Lines (MOLs) is a convenient technique for solving time-
dependent partial differential equations. Replace all spatial derivatives with finite
differences, but leave the time derivatives intact, and use an ordinary differential
equation solver on the resulting system. In effect, this is an implicit time-stepping finite
difference algorithm with the time step determined automatically adaptively by the
ODEs solver aI?ng a line in time (see figure (1)) [11].

u u u u Um-2n  Um-1n  Umpn
t, I...0.”1.Q...l.'rl.....zan..‘..?’.“ .............. P Pl P
O @nnnns @rrnnnn Q@rrnnnn @ rrnnnnnnnnnnnnnnn @rnnnns @ nnnnn 9
| @ssnsns @rrnnnn @rrnnns @ rrsssssnnnnnnnnns @rrnnns @ mnnns @
[ @ @ L 4 L 4 L g L » X
Xo X1 X2 X3 Xm2  Xm-1 Xm

Figure (1). The method of lines
Example: Given a general parabolic equation of the form

u, (x,t) = Lu(x,t)+ f(x,t), ...(9)

where L is an elliptic operator. Let Ln be a finite difference operator on a grid xj=a+ih.
We can form a semi-discrete system [11] of ordinary differential of the
following form

%: LU, (t)+f,(t) ...(10)

In other words, we only discretize the spatial variable. For the heat equation with a
2

source U, =au, + f . We have L:%, L, =5,
X

XX !

the discretize system of ODE [11]

is:
dUi (t) —a Ui—l(t) -2U iz(t) +Ui+1(t) + f (Xi ,t) , . (11)
dt h
i=1,2,...m-1
The initial condition is  Ui(0)=uo(x;,0), i=1,2,...,.m-1
The ODE system can be written as a vector form
dy
e (VRORS'S +(12)
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5. Numerical Methods
5.1. Explicit RK method
The form of ERK method of order four is [8]

un+1—un=%(k1+2k2+2k3+k4) ...(133)
k,=f(t,,u,), ...(13b)
1 1
k,=f(t,+=h,u,+=hk,), ...(13c)
2 2
1 1
k; = f(tn+5h,un+§h K,), ...(13d)
k,=f(t,+hu, +hk,), ...(13e)

5.2. Implicit Runge-Kutta Method
The general R-stage Implicit RK method is defined by [8]

ur1+1_un :h¢(tn!un1h)! (14&)
R
¢(tuh)=>bk,, ...(14b)
r=1
R
k.=f@+hc,u+h>a. k), r=12...,R ...(l4c)
s=1
R
c,=>a,r=12..,R ...(14d)
s=1
Then two-stage implicit Runge-Kutta method of order four is defined by
U =y = 2k +Ke), (152)
k,=f|t, + 1+£ h,un+£hk1+ 1+£ hk, |, ...(15b)
2 6 4 4 6
k,=f|t + E—ﬁ h,u, + E—ﬁ hkl+£hk2 , ...(15c)
2 6 4 6 4

6. Numerical Solution of the Model

We find the numerical solution to PPDEs, system (1) and (2) by two numerical
methods ERK method and IRK method using MOLs to transform (4.1) and (4.2) to a
system of ODEs which can be written when h=k in the form

dult) « o
T = h_;[ui+1,j,n+l - 2ui,j,n+l + ui—l,j,n+l]+ h_;[ui,j+1,n+1 - 2Ui,j,n+1 + ui,j—l,n+1:| - (16)
2
U Vi +0.02(-u; ;)
and
dv(t) « a
T = h_g [Vi+l,j,n+l - 2Vi,j,n+l + Vi—l,j,n+1]+ h_s [Vi,j+1,n+1 - 2Vi,j,m—l + Vi,j—l,n+1] - (17)

+U, V7, —0.086V, |

i,j,n"i,j,n
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where x;=ih, yi=jh and i, j, n=1,2,...,N.
Then the above systems (16) and (17) can be written as

% = AU + Bu—uv? +0.02(1L—u)
% =Cv+Dv+uv?-0.086Vv

where the tri-diagonal matrix A, B, C and D, and the concentration u and v have the
form

-2 1 o - v .. 0 Uy jna
1 ) 1 o ... 0 uzvj'n_*_l
1 -2 1.0 - 0 :
A=% P oo fus
. . O
: .1 -2 1 :
0 o - - 0 1 -2 | Uistjns |
—2 1 0 0 ] i Ui ni |
1 ) 1 0 0 ui,Z,n+l
1 -2 1 0 - 0 :
: o 1 -2 1
L 0 0 e oo 0 1 —2_ _Ui,j+1,n+1_
2 01 0 o o oo 0] Vs ]
1 -2 1 0 - - O Vaina
1 -2 1 0 0 :
(04
C=% V=
0o 1 -2 1
I 0 0 0o 1 - 2_ _Vi+1,j,n+1_
__2 1 0 O_ _Vi,l,n+1w
1 ) 1 O O i2,n+1
1 -2 1 0 - 0 '
o ) . )
D=2 V=
: 0 -2 1 :
0 o e o 01 -2 | Vijens |
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In table (1), we show that the comparison between the above two methods for
finding numerical solution for the Gray-Scott model in two dimensions that represent in
system of equations (1) and (2). Where ERK and IRK methods have been used.

Table (1). comparison between ERK method and IRK method for the values of concentrations u
and v that computed at time step size 6t=0.1 and space step size h=k=0.1.

Point ERK method

IRK method Error Estimate

(i.j,n)

Concentration u

(6,8,1) 1

1 0

9,4,2) 0.89622764746864

0.89941375892612

0.00318611145748

(53,3) 0.78639547711517

0.

80766821506889 0.02127273795372

(4,9,4) 0.67368366462782

0.

70659225379597 0.03290858916815

(10,7,5) 0.56235078311363

0.

60062674328733 0.03827596017370

(2,5,6) 0.45712135947325

0.49309946585418

0.03597810638093

(3,2,7) 0.36225626706226

0.

38910367142062 0.02684740435836

(10,5,8) 0.28067391221563

0.

29434498857433 0.01367107635870

(7,10,9) 0.21351475439768

0.

21375275330471 0.00023799890703

(8,6,10) 0.16028013846879

0.

14994306532769 0.01033707314110

(10,10,11) 0.11935892378226

0.

10262015433508 0.01673876944718

ERK method

Point

IRK method Error Estimate

(i.j;n)

Concentration v

(6,8,1) 1

1 0

(9.4,2) 1.09487172033376

1.09088683603301

0.00398488430075

(5,3,3) 1.19517617642356

1.20310722057464

0.00793104415108

(4,9,4) 1.29770852626288

1.32853728176919

0.03082875550631

(10,7,5) 1.39821040273145

1.46447592246093

0.06626551972948

(2,5,6) 1.49198744794097

1.60701967468687

0.11503222674590

(3.2,7) 1.57483857665302

1.74994874886784

0.17511017221482

(10,5,8) 1.64392934956359

1.88516728112346

0.24123793155987

(7,10,9) 1.69821488835099

2.00424085233369

0.30602596398270

(8,6,10) 1.73829122153923

2.10063687940548

0.32345657866318

1.76585857761869

(10,10,11)

u concentration

0s

— ERK method
— IRK method |4

045+

04t

0.35+

03F

= 0251

02r

015+

o1r

0.05

i

EI‘E EIIE EIIY DIB EI‘B 1

Figure (2). shows that the comparison
between ERK and IRK methods for finding

the concentration values u(6,:,6) at level n=6,

row i=6 and for all columns j When
a, =8x107°, @, =4x10"°, and h=k=5t=0.1.

L L L I
0 0.1 02 03 04

2.17152569069154
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v concentration

— ERK methad
— IRK method |}

DIS D‘E EII7 EI‘E I]IEI 1
Figure (3). shows that the comparison between
ERK and IRK methods for finding the

concentration values v(6,:,6) at level n=6, row i=6
and for all columns j. When ¢, =8x107°,

a, =4x107°, and h=k=5t=0.1.
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cncentration ufB,: 6)

2 Least squares ERK
—— ERK method 4

ne
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Figure (4). Least squares error of ERK
methods for finding the concentration values
u(6,:,6) at level n=6, row i=6 and for all
columns j. When o, =8x107°,a, = 4x107°,
and h=k=5t=0.1.

concentration u(B ; B)

Q@ Least sguares IRK
— IRK methad
121 1
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Figure (5) Least squares error of ERK
methods for finding the concentration values
v(6,:,6) at level n=6, row i=6 and for all

columns j. When a, =8x107,
a,=4x10", and h=k=5t=0.1.

cocentration (B, &)

o 2 Least sguares IRK
o} O [ — IRK method H

L I I ! L
s OfF Oy OF O 1
%

! L ! L
0 mg W2 @mE @A

Figure (6). Least squares error of IRK
methods for finding the concentration values
u(6,:,6) at level n=6, row i=6 and for all

Figure (7) Least squares error of IRK
methods for finding the concentration values
v(6,:,6) at level n=6, row i=6 and for all

columns j. When o =8x107°,
a,=4x10", and h=k=5t=0.1.

columns j. When o, =8x107°, o, =4x10°°,
and h=k=5t=0.1.

7. Conclusion

The method of lines is convenient technique to transform the system of non-linear
parabolic partial differential equations into the systems of ordinary differential
equations and thus the new systems require special treatment. When we use ERK
method to solve the system of ODEs, we notice that the region of stability is very small
but when we used IRK method the stability region is big. Thus from table (1) we
conclude that the numerical results of IRK method is more accurate than the results of
ERK method, and we found least squares of each method.
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