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ABSTRACT

Data stream clustering refers to the process of grouping continuously arriving new
data chunks into continuously changing groups to enable dynamic analysis of
segmentation patterns. However, the main attention of research on clustering methods
till now has been concerned with alteration of the methods updated for static datasets
and changes of the available modified methods. Such methods presented only one type
of final output clusters, i.e. convex or non-convex shape clusters. This paper presents a
novel two-phase parallel hybrid clustering (HPPD) algorithm that identify convex and
non-convex groups in online stage and mixed groups in offline stage from data stream.
In this work, we first receive the data stream and apply pre-processing step to identify
convex and non-convex clusters. Secondly, apply modified EINCKM to present online
output convex clusters and modified EDDS to present online output non-convex clusters
in parallel scheme. Thirdly, apply adaptive merging strategy in offline stage to give last
composed output groups. The method is assessed on a synthetic dataset. The output
results of the experiments have authenticate the activeness and effectiveness of the
method.

Keywords: Big Data; Hybrid Clustering Algorithms; Data Stream Clustering
Algorithms.
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1. Introduction

Late technologies in data and systems administration innovations and their
applications in pretty much every area of life [1]have prompted a quickly developing
transition of huge measure of information known as Big Data. Such big data might be
put away at different areas with various configurations. Big Data need opportune
investigation for upgrading intensity and improving the exhibition of organizations [2].
A standout amongst the most significant attributes of big data is its speed (velocity),
which implies that information may arrive and require handling at various paces. Some
systems, the entry and preparing of information can be performed in a bunch handling
style, others need consistent and continuous investigation of approaching information
stream blocks [3][4]. Grouping stream data is characterized as the gathering of
information in light of much of the time arriving new information in pieces for
increasing comprehension about basic gathering patterns that may change after some
time in the stream data [5].

There is no one method is reasonable for a wide range of data records, nor all
methods suitable for all issues. Conventional grouping methods have surely understood
weaknesses, for example, reliance on the underlying state, assembly to nearby optima,
worldwide arrangements of enormous issues can't have existed with sensible measure of
calculation exertion and so forth.

Up to now, combination of two or three different clustering algorithms to identify
both convex and non-convex clusters is new to clustering data stream. Hybrid method
may conceive full utilize of advantages of different optimization approaches. Our
believe is that the hybridization of clustering data stream methods could give more
benefits and advantages. Therefore, the goal of this research is to give a novel way of
combining data stream grouping methods.

Methods of clustering data streams present sequence of clustering views
periodically (incremental learning approaches) [6] or depend on user query point (two-
phase learning approaches) [7]. However, these algorithms presented only one type of
final output clusters, i.e. convex or non-convex shape clusters. In this research, we
dispute that methods for big data stream grouping must present convex, non-convex, and
mixed output clusters. To do so, this paper presents a novel two-phase parallel hybrid
clustering (HPPD) algorithm that identifies convex and non-convex groups in online

68



HPPD: A Hybrid Parallel Framework of Partition-based and ...

stage and mixed groups in offline stage from data stream. In this work, we first receive
the data stream and apply pre-processing step to identify convex and non-convex
clusters. Secondly, apply modified EINCKM (Enhanced INCremental K-Means)
algorithm to present online output convex clusters and modified EDDS (Enhanced
Density-based Data Stream) algorithm to present online output non-convex clusters in a
parallel scheme. Thirdly, apply adaptive merging strategy in offline stage to produce
eventual mixed output groups. The method is assessed on a synthetic dataset.

The hybridization of methods is a general acceptance idea via their abilities in
managing nowdays challenges that contain complicated, inaccurate and ambiguity
(uncertinty). Many applications could take advantages from designing hybrid system (a
two-phase parallel model of finding convex, non-convex, and mix groups) in stream
data records. Act tracking of some applications like social networking, cars, rockes and
animals tracking from videos, crime controling using CCTV camera in discovering
curious entities such as unexpected cars, and patient advisor in healthcare are some of
potential cases.

This paper presents a novel hybrid (HPPD) algorithm that detects convex and
non-convex shape clusters separately in an incremental learning scheme and mix
clusters in a two-phase learning scheme depending on the user demand from streaming
data. In this work, we first modify our recent EINCKM [8] algorithm and EDDS [9]
algorithm. After that, designed a parallel model to apply the two modified algorithms.

The method was assessed on an elected datasets utilizing different qualifications.
The output test state that the suggested method enhances grouping accuracy. The outline
of the method is created to be flexible for more enhancements of further modifications
and paralelise the method.

The remain of this research is calssified as follows. Section 2 states the related
work on hybrid clustering data stream methods. Section 3 illustrates our published two
algorithms EINCKM and EDDS. Section 4 describes the problem in more details.
Section 5 states the suggested HPPD method. Section 6 explains the assist of the
effectivness of the method and practical tests utilizing a selected dataset. Section 7
summarizes the research and states the future thoughts of this work.

2. Related Work

All the current grouping methods have their own qualities, yet additionally remain
imperfect [10]. As a sort of partitional grouping, K-Means method is basic and highly
effective, yet it can just find convex shape groups. The partitional grouping, for
example, K-Means, is delicate to the anomalies and centers. A good center we pick the
better outcomes we gain. For the most part, the computational multifaceted nature of the
hierarchical grouping is O(n"2), where n is the all-out number of data records. In this
way, they are typically used to examine little datasets and can't repudiate the earlier
grouping output. The hierarchical methods can discover non-curved groups, yet they are
delicate to anomalies and are not appropriate for enormous databases. The grid-based
grouping methods are not reasonable for high-dimensional datasets. Density-based (for
example DBSCAN) can find groups of non-convex shape. In any case, it is delicate to
the information parameters, particularly when the intensity of information is non-
uniform. Then again, DBSCAN experiences issues with high-dimensional datasets.
Hence, the hybrid solution is the best way to take advantages from different algorithms
and methods and get rid of their limitations.

In the coming sections, we shall produce five concepts that are associated to have
more understanding of the hybridization of data stream grouping methods. First of all,
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we shall sum up the researches in hybrid conventional grouping methods. Secondly, we
will explain works of hybrid outlier detection algorithms. That is because detecting
outliers in unsupervised learning algorithm demand finding clusters as well as outliers.
Thirdly, since our general idea is to design a hybrid clustering algorithm from the other
clustering methods, we will summarize some works in clustering ensemble methods.
Finally, we shall state the researches that presented in hybrid data stream grouping
methods.

A. Traditional Clustering Algorithms

Jain [11] described a hybrid clustering algorithm based on K-Means and K-
Harmonic Means (KHM). It takes advantages of both algorithms to present method
which is not affected by initial clusters and converge to a global minimum under certain
conditions.

Sangam and Om [12] presented a hybrid algorithm integrates K-Modes and K-
Means algorithms to allow clustering data points described by mixed data type, i.e.
categorical and numerical attributes by using a combined dissimilarity measure.

Viswanath and Pinkesh [13] presented a novel scalable hybrid clustering method
(L-DBSCAN) to get fast arbitrary shaped clusters by combining density-based clustering
DBSCAN (which can discover consistent arbitrary shaped clusters along with detection
of noisy outliers) with K-Means (which can find compact and spherical shaped clusters).
First two types of prototypes are derived using Leaders Clustering method. These
prototypes are carefully used by the DBSCAN to present clusters faster than DBSCAN
using the entire dataset.

Dhiman et al. [14] used a hybrid system of clustering and classification algorithms
to search for the data record of tax bills and find the useful knowledge regarding the tax
magnitude. Naming, they hybridize three main algorithms, i.e. K-Means, SOM, and
HAC from grouping and CHAID and C4.5 methods of classification. It presented good
output results than the conventional methods.

Conventional algorithms are elite via assurance of discovering convex shape
groups (such as K-Means) or arbitrary shape clusters (such as DBSCAN). However, the
traditional methods also have their limitations, like find clusters in static data (they did
not consider concept drift) and identify only one cluster type, i.e. spherical or arbitrary
clusters. The goal of our paper is to evolve a dynamic grouping algorithm that discovers
spherical and arbitrary shape clusters in online fashion.

B. Outlier Detection Algorithms

Jiang et al. [15] proposed a two-phase clustering algorithm for outlier’s detection.
They first modified the traditional K-Means algorithm in phase one by using a heuristic
technique (if new data point is far from existing clusters assign it as centre). And then
they constructed minimum spanning tree MST in phase two and remove the longest
edge. The small clusters in the tree with less number of nodes are selected as outlier.

Thakran & Toshniwal [16] presented an algorithm addressed outlier detection in
data streams. For identifying anomalies two classes of grouping methods, density based,
and partitioning are mixed. Then weighted K-Mean method is utilised for weighting
properties based on their association, which lead to minimise the consequence of the
inapplicable features.
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Koupaie et al. [17] proposed combined classification and clustering techniques to
detect outliers in data streams. More detailed, they used K-Means algorithm to cluster
data points and add labels to each of them. After that, apply SVM algorithm to classify
outliers.

Koupaie et al. [17] displayed a hybrid method of two stage grouping method to
recognize anomalies in information streams. The two stages are kept running in parallel
with one another. First stage is online stage in which K-Means method is utilized for
grouping window information. From these groups, a few groups are little in size and a
few groups are far from different groups these are called as anomalies and put away for
further use in second stage. Second stage is offline stage in which all the recently
identified anomalies are joined with anomalies of current window. At that point this
information is grouped utilizing K-Means method and groups are created.

Although these methods identify clusters and outliers, they cannot identify
clusters with different shape clusters.

C. Clustering Ensemble

Ensembles grouping is an important approach for enhancing authentication,
efficiency, and activity of unsupervised classification methods [18][19]. There is a rich
body of literature in this field:

Zhang et al. [20] proposed an ensemble method which combines both classifiers
and clusters together for mining data streams through a weighted average mechanism.
Fathzadeh and Mokhtari [21] introduced Stream Ensemble Fuzzy C-Means (SEFCM)
method. It is separate and-vanquish technique contained three phases; 1) isolate
information stream to littler chunks; 2) group each chunk utilizing ensemble grouping
(EFCM) method; and 3) consolidate the finishing up segments utilizing single linkage
and concentrate a flat out segment. Mutazinda et al. [22] exhibited a ensemble grouping
strategy to group blended information (category and numerical). It executes Chameleon
method for the numerical data and Squeezer method for the categorical data and joins
the yields to display last groups.

Ensemble group is increasingly about the agreement of different grouping models,
and not by any stretch of the imagination about recognizing convex and non-convex
shapes.

D. Data Stream Clustering Algorithms

Aghabozorgi et al. [23] proposed a hybrid grouping method is presented depending
on the likelihood in shape of the time series records. Time series objects are firstly
clustered as sub-clusters depending on likelihood in time data record. The sub-groups are
then consolidating utilizing the K-Medoids method depending on likelihood in shape.

Sree & Sowjanya presented [24] an algorithm which combined hierarchical and
partitioning clustering methods. It applied hierarchical clustering first to decide location
and number of clusters in the first round and ran the K-Means clustering in another round
to identify output clusters.

Chen & He [25] proposed a hybrid distance evaluation method Str-FSFDP to
cluster mixed data stream. This method was inspired by the density-based clustering and
self-adaptive peak density clustering algorithms for data with mixed attributes.

Again these algorithms are focusing on one type of output clusters, i.e. spherical or
arbitrary shaped clusters.
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LkIkIk
E. Data Stream Clustering Algorithms EINCKMand EDDS
e EINCKM Algorithm

EINCKM [8] is an incremental method for grouping prototype data streams. It
depends on a generic framework for data stream clustering that involves three main
modular steps [8] [9] Build Clusters (BC), Merge, and Prune (Fig. 1). Build Clusters
includes the clustering algorithm that used to find the clusters from input data chunk,
Merge (step 2) is used to integrate the new and existing set of clusters, and Prune (step
3) is to detect outliers and check the fading process. The method uses a heuristic
approach to predict the K (number of groups), a radius calculation to combine
overlapped groups and a variance approach to identify the anomalies. The method is
flexible and ready for further enhancement. However, the method developed to present
convex shape clusters. In other words, it does not identify correct clusters if they formed
arbitrary shapes.

e EDDS Algorithm

EDDS [9] is incremental intensity-based method for grouping information
streams. It pursues a similar framework for information stream grouping that includes
three principle steps [8] [9] Build Clusters (BC), Merge, and Prune (Fig. 1). The method
identifies groups and anomalies in an approaching information piece. It adjusted the
conventional DBSCAN method to condense each group regarding a lot of surface-
center data records. The method execute the intensity reachable idea of DBSCAN as its
combining technique and prunes the inside center utilizing a heuristic arrangement. The
method likewise expels the old centers and anomalies relying upon a fading process.
However, this algorithm has high computation time comparing with EINCKM. Besides,
it does not separate the output shape clusters, i.e. it does not distinguish between convex
or non-convex shape clusters.

Data Chunk

Data Stream
Clustering
Algorithm

CLUSTERS II

(Updated)

OUTLIERS
POOL
(Updated)

Fig. 1. The general framework of Data Stream Clustering Algorithms [8][9].
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3. Problem Description

In this work, we are trying to identify different types of clusters, i.e. convex and
non-convex shape clusters over time in the data stream. The basic idea is this (Please, see
Fig. 2);

1. Get the stream data and split it into many data blocks (step 1).

2. Do “Pre-processing” to divide the data chunk into two types of clusters (convex
clusters) and (non-convex clusters).

3. On one hand, the convex clusters go to the "Modified EINCKM" to always
present convex output clusters (step 3-Left). On the other hand, the non-convex
clusters go to the "Modified EDDS" to always present non-convex output clusters
(step 3-Right). Step 3 we could call it “Online Phase” or “Incremental Learning”
because they present output clusters incrementally (convex shape clusters from left
hand side (Modified EINCKM) and non-convex shape clusters from right hand side
(Modified EDDS)).

4. If there is a query from the user about the whole clusters (convex and non-convex or
mix) we will apply “Adaptive Merger” (step 4). This merger will give us mixed
clusters. We could call this step as “Offline Phase” or “Two-phase learning”.

... Data Stream ...

1

-
| Divide the data stream into several data chunks |

Online Phase
Incremental

Convex Clust: Non-convex Clusters
3-Left 3-Right ~

| Moditied EINCKM | Moditied EDDS |

e Bag
ex Output Cluste Non-convex Outpm Cluqters,'
(Htlln Phas
Adaptive Merger ”‘ e
B® e d

Mixture Output Clusters

Fig. 2. General Idea

4. HPPD Algorithm

Recently, many researchers have been proposed algorithms using a hybrid scheme
to solve the data steam clustering problem. This study is involved in building a
clustering model that combine the advantages of our two-recent data stream clustering
algorithms EINCKM and EDDS named HPPD.

Before officially elaborating the HPPD algorithm-level framework, we would like
to introduce some preliminary knowledge to better facilitate its understandability. More
precisely, we start with illustrating the outline of general system framework (Sec. 5.A),
and the HPPD algorithm details (Sec. 5.B).

A. The outline of the suggested framework

The overall framework of the suggested HPPD method is illustrated in Fig. 3. It
composes of the coming major stages:
1. Receive the data streams and divide it into several chunks (step 1).
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2. Do “Pre-processing” (step 2). The output of this step is two types of clusters (convex
clusters) and (non-convex clusters). This step includes:

e Apply DBSCAN to the incoming data chunk (step 2.A).

e For each cluster repeat (step 2.B): Find the boundary (BN) using our developed
function in EDDS (step 2.C.Left). And find the convex-hull (CH) using Qhull
algorithm (step 2.C.Right).

e If BN = CH the cluster is a convex, otherwise it is a non-convex (step 2.D).

3. The convex clusters go to the "Modified EINCKM" (step 3.Left) to always
present convex output clusters. This step includes:

e Compute the centroids and radius (step 3.Left.A).

e Do merging using Merge function in EINCKM (step 3.Left.B).

e Do pruning using Prune function in EINCKM (step 3.Left.C).

On the other hand, the non-convex clusters go to the "Modified EDDS" (step 3.Right) to

always present non-convex output clusters. This step includes:

e Compute the surface-cores (step 3.Right.A).

e Do merging using Merge function in EDDS (step 3.Right.B).

e Do pruning using Prune function in EDDS (step 3.Right.C).

4. If there is a query from the user about the whole clusters (convex and non-convex or
mix) we will apply “Adaptive Merger” (step 4). This merger will give us mixed
clusters. This step includes:

e For all the convex clusters that come from “Modified EINCKM?”, add artificial
surface-cores which are data points far from the centroids of 2STD and the
distance between the data points themselves is less than or equal EPS (This
criterion helps merging strategy as “density reachable”) (step 4.A).

e Do merging using Merge function in EDDS (step 4.B).

e Remove the artificial surface-cores if there were no merging (step 4.C) and
present the final output clusters.

Step 1, 2 and 3 we could call them “Online Phase” or “Incremental Learning” because
they present output clusters incrementally (convex shape clusters from left hand side
(Modified EINCKM) and non-convex shape clusters from right hand side (Modified
EDDS)). We could call step 4 as “Offline Phase” or “Two-phase learning”.
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... Data Stream ...
1

| Divide the data stream into several data chunks |

2
A X

Apply DBSCAN
B
| Repeat for each cluster |

C- Left (‘ \ C - Right

Find the Boundary BN Find the convex-hull CH
using function in EDDS using quick hull algorithm

“‘\

Pre-processing

Online Phase
Incremental
Yes No >—
BN=CH?
Convex / Clusters Non-convex \ Clusters
3-Left 3-Right
Av A
| Compute centres & radius | | Compute surface-cores |

Modified —2Y Modified B

S o

C C

1N Bead |

Convex Output Clusters 4 Non-convex Output Clusters
Ay
| Repeat for each cluster |
B R, Offline Phase

Add artificial surface-cores with 2STD far Two-phase learning
from centroid and distance between is EPS
c 3
EDDS Merger -|

B @@ o f

Mixture QOutput Clusters

D

Adaptive
Merger

Fig. 3. General framework of the HPPD algorithm

B. Suggested HPPD Algorithm

After introducing the main preliminary steps of the algorithm, we are going to
present the suggested Method. Fig. 4 summarizes the code explanation of the essential
HPPD method. The inputs are a block of data CH of M capacity, the minimum number
of data points per cluster MinPts, and epsilon Eps. The outputs are K spherical clusters
and R arbitrary shape clusters.
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Hybrid Algorithm:
Inputs:
- DH: Block of data of M.
- MinPts: The smallest amount of data records for each cluster.
- Eps: The radius of the minimum group.
Outputs:
- K Convex Clusters;
- R Non-convex Clusters;
Algorithm Steps:
- Repeat for each data chunk
1.{cf) = DBSCAN(DH, Eps, MinPts);//cfis a data record contain a summary group.
2.(BN) = Bound(CF,Eps, MinPts)
3.(CH) = Qhull(CF)
If BN = CH then
Calculate y; and o;
(CF) = MergeEINCKM(CF)
(ConvexCF) = PruneEINCKM(CF)
else
Calculate SurfaceCores
(CF) = MergeEDDS(CF)
(NonConvexCF) = PruneEDDS(CF)
end
4. If there is a query for convex and nonconvex clusters then
Add ArtificialSurfaceCores into ConvexCF
(CF) = MergeEDDS(CF)
Remove ArtificialSurfaceCores from ConvexCF
end

Fig. 4. Code of the method.

5. Evaluation of the Suggested Algorithm

Here, we shall assess the effectiveness of the proposed method from the accuracy
and efficiency concepts of the approach. Firstly, we will introduce some correctness
criteria (Sec. 6.A). Then, we will present the synthesized datasets that will use for testing
(Sec. 6.B). After that, explain the evaluation framework (Sec. 6.C). Finally, we will
introduce the experimental results and discussion (Sec. 6.D).

A. Evaluation Criteria

Correctness of the clustering methods can be evaluated via various approaches
which can be found in the literature [26]. This research choses the external (supervised)
methods to assess the accuracy of the proposed method. We build a synthetic datasets
which contain known groups as the ground truth for testing the “closeness” of the
persistent clustering results produced by the algorithm to the ground truth. The closer the
resulting persistent clusters to the known clusters, the more accurate is. Those criteria
including entropy, purity, and the sum of squared errors (SSE).

Purity was utilized in [27], entropy in [28], and SSE in [7]. Purity alludes to the
extent of the information directs having a place toward a referred to group that are
allocated as individuals from a determined group by the method. The higher the extent
of purity ([0, 1]) is, the more sure that the method has discovered the first group and the
better the method is [29]. Entropy mirrors the quantity of the information focuses from
various known groups in the first dataset that are doled out to a determined group by the
method. The estimation of this measure is [0, Log,N] where N is the quantity of
realized groups included. The littler estimation of the entropy is, the less individuals
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from the realized groups are blended in the determined groups found by the method, and
the better the grouping method is [30].. SSE is a regularly utilized group quality
measure. It assesses the conservativeness of the subsequent persevering groups. Low
scores of SSE demonstrates better persevering grouping results as the groups contain
less inside varieties [29].

The productivity of a method was estimated by the measure of time in seconds
taken for the method in finishing the grouping task. Therefore, we conducted all the
experiments with a collection of synthetic datasets.

B. Dataset Used

All the experiments are done with a synthetic dataset. The same dataset is non-
uniformly distributed over different nodes. In details, we created a synthetic dataset (DS)
of 800000 data records for 2D. The DS include 4 groups; 3 concave shape groups and
convex shape group. Groups in DS have various data records and different variations.
The main idea behind selecting this dataset is that to test the effectiveness of suggested
method of identifying convex and non-convex shape clusters. Fig. 5 illustrates the
dataset. We agreed that there are some drawbacks of the selected dataset. It does not
have many features that the real-life datasets have. In future work, this method will
evaluated on more complicated datasets.

Original Dataset

Fig. 5. Scatterplot of DS
C. Experimental Results

MATLAB 2017b was utilized to assemble an execution of the HPPD method and
the examination structure. The suggested method does not deal with the first chunk of
the dataset and later arrived chunks in an unexpected way, and consequently an unfilled
arrangement of existing groups and a vacant arrangement of anomalies were accepted as
input when the primary piece is handled. The thought behind the irregular choice of the
information is to explore the conduct of the method when there is no control on the
arrangement of information focuses, for example we didn't choose explicit information
focuses from explicit groups in the ground truth dataset. No supposition that was agreed
that the first information piece correspond to the whole information space. So as to limit
the impact of the irregular selection of information focuses, the examinations were
rehashed multiple times, and the average is determined.
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Every one of the examinations were kept running on a machine furnished with 2.30
GHz 4 cores Intel(R) Core(TM) i5-4590 CPU and 16 GB memory. The working
framework was Windows?7. All the programs were developed using MATLAB.

e Purity

Fig. 6 demonstrates the subtleties of examination results between the known
groups and the yield groups from EINCKM, EDDS, and HPPD methods separately.
HPPD has the most noteworthy purity. This is on the grounds that it keeps all the
delegate information focuses and stringent merge technique. EINCKM likewise has a
decent purity by pruning and reserving the surface-center data objects, however this
procedure disregards non-convex shape groups. EDDS has a decent purity also and
disregards a great deal of core data records which may not influence the last groups.

1 0.986

0.98 0.966
0.96

0.94
0.92

0.9
0.88
0.86

B EINCKM mEDDS mHPPD

0.916

DS

Fig. 6. The purity measurement.

e Entropy

As appeared in Fig. 7, HPPD has the least entropy. EDDS has more elevated
amount of entropy. EINCKM has the most abnormal amount of entropy among the
three methods. The outcomes show that the pruning internal core data points affects
group accuracy. Be that as it may, this outcome should be perused together with the
purity estimation results to have a fair view on group accuracy.

0.98
0.96
0.94
0.92

0.9
0.88
0.86

0.956
0.938

0.916

DS

HMEINCKM ®EDDS mHPPD

Fig. 7. The entropy measurement.
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e Sum of Square Error (SSE)

As appeared in Fig. 8, HPPD has the most minimal SSE, trailed by EDDS which
thus is trailed by EINCKM, again demonstrating the expense of pruning internal core
data points. On the other hand, EDDS and EINCKM still have the most exceedingly
low SSE score, showing that blending incorrectly information focuses into found groups
does likewise influence group quality. It should be mentioned that SSE may not be the
perfect evaluator for nature of non-convex shape groups.

0.8 0.7048
0.657 0.605
3 0.6
+
K
304
0.2
0
DS

B EINCKM mEDDS mHPPD

Fig. 8. The SSE measurement.
Efficiency Evaluation

e Execution Time

Execution time is the proportion of the measure of time in seconds that proceed
for the method in finishing the grouping task. Concerning implementation time, the
EINCKM method has the base execution time pursued by EDDS, at that point HPPD
(see Fig. 9).

2.5
2.173

) 1.913

1.069

Exec. Time in Sec.

DS

HMEINCKM mEDDS mHPPD

Fig. 9. The efficiency measurement

After getting these output results we could approve that EINCKM and EDDS
methods are faster than HPPD.
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D. Discussion

The major promise of the HPPD method is the easiness and high flexible
structure. This consist of the main functions of the method: pre-prcessing to decide
convex and non-convex clusters, modified EINCKM to perform convex clusters,
modified EDDS to perform non-convex clusters, adaptive merger to prenesnt mixed
output clusters. All process were allocated as functions which means we could
simultaniosly enhance every function apart without modifying the overall main
structure of the method.

There were propostions of more enhancements of every operation inside the
method. Firstly, we know that utilising three separate functions (DBSCAN, EDDS
function, and Qhull algorithm) cause slow process to deside convex and non-convex
clusters. Therefore, we could replace those processes by one function, such as using
computational topology to identify the cluster shape. Besides, the merge strategy we
used in both modified algorithms is now very straight to reduce the magintude of
execution time. In fact, the merging approche could be more enhanced via more
advance solutions like a Bayesian theory. Lastly, machine learning techniques and
fuzzy-based approches could be consider to produce more effecint merger function to
produce mixed final groups.

6. Conclusion and Future Work

This paper presented a novel hybrid parallel framework by adopting our lastly
produced data stream grouping methods, Modified EINCKM and Modified EDDS to
present not only the outliers but also the convex, non-convex, and mixed clusters. The
evidence shows that the convex, non-convex, and mix clusters are very useful on the
application side of data streams. The hybrid algorithm HPPD emphasizes easiness,
modularity, and flexibility.

The main thoughts of the presented method are to maintain the spherical and non-
spherical groups concurrently divide and produce the last output groups as requested.
The method stated one important issue of data stream grouping methods: Presenting
convex and non-convex shape clusters separately at the same time and mixed clusters
when there is request from the user in data stream. The evaluation of some synthesized
datasets has explained that the method presents right and high accurate groups with less
execution time.

Future work will concentrate on updating the method. Because of the method is
flexible, those updating thoughts can deals with the major functions of the method.
Firstly, we will investigate the topology computation to present more sophisticated
version of the pre-processing step. Secondly, we will investigate hybridizing different
clustering algorithm, like graph-based, hierarchal-based, and model-based methods to
test the modularity of our framework. Thirdly, we will investigate utilizing learning
strategy as feedback to improve the pre-processing step and improve clustering
algorithms that have been used. Finally, distributed approaches may have encapsulated
to produce more accurate, correct, and authentic new form of the HPPD method.
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