An Overview of Various Strategies for Dealing With The Under-Frequency Load Shedding Problem in Power Systems
Abstract
It's essential to maintain a consistent and dependable energy supplies given the rising global demand for energy. When there is a crisis, such as a malfunction or an imbalance between energy production and load demand, the Frequency system becomes unstable. A load shedding scheme is an important key to recover frequency system and ensure the obtainability of electrical power for serious loads in a plant. Therefore, it is necessary to provide reliable technologies to quickly and accurately way to prevent breakdown in the system energy. Under Frequency Load SheddingUFLS is one of the important systems protection, and as is currently the case in many instances, it is the final step to prevent the system's collapse following an interruption or failure energy in the system. In this paper, the review of the literature is presented, along with a look at the various methods employed in the electrical power system and a comparison of traditional, adaptive, and intelligent load-shedding strategies. In order to clarify the intended function (entity) and preserve system stability, extra classification of additional elements is suggested. The various load shedding systems were addressed, along with their benefits and drawbacks, and a comparison between them was made with a list of the most significant justifications for doing so.
References
- . T. Hsu, H. J. Chuang, and C. S. Chen, Artificial neural network based adaptive load shedding for an industrial cogeneration facility, Conf. Rec. - IAS Annu. Meet. (IEEE Ind. Appl. Soc., vol. 1, no. 1, pp. 18, 2008, doi: 10.1109/08IAS.2008.137.
- A. A. Mohd Zin, H. Mohd Hafiz, and M. S. Aziz, A review of under-frequency load shedding scheme on TNB system, Natl. Power Energy Conf. PECon 2004 - Proc., pp. 170174, 2004, doi: 10.1109/pecon.2004.1461637.
- A. Ahmadi and Y. Alinejad-Beromi, A new integer-value modeling of optimal load shedding to prevent voltage instability, Int. J. Electr. Power Energy Syst., vol. 65, pp. 210219, 2015, doi: 10.1016/j.ijepes.2014.09.021.
- A. Chandra and A. K. Pradhan, An Adaptive Underfrequency Load Shedding Scheme in the Presence of Solar Photovoltaic Plants, IEEE Syst. J., vol. 15, no. 1, pp. 12351244, 2021, doi: 10.1109/JSYST.2020.2995050.
- A. Derviskadic, Y. Zuo, G. Frigo, and M. Paolone, Under Frequency Load Shedding based on PMU Estimates of Frequency and ROCOF, Proc. - 2018 IEEE PES Innov. Smart Grid Technol. Conf. Eur. ISGT-Europe 2018, pp. 16, 2018, doi: 10.1109/ISGTEurope.2018.8571481.
- A. Drabandsari and T. Amraee, Optimal Setting of under Frequency Load Shedding Relays in Low Inertia Networks, Proc. - 2018 Smart Grid Conf. SGC 2018, pp. 16, 2018, doi: 10.1109/SGC.2018.8777850.
- A. E. Journal, C. C. By, A. P. Regulation, S. C. Level, and A. E. Journal, Effect of Electric Vehicle Charging Stations on the Performance of Distance Relay, vol. 28, no. 1, pp. 133144, 2023.
- A. E. Journal, C. C. By, E. Resources, and D. Generation, The Effect of Reactive Power Capability of the Inverter on a Hybrid Power System, vol. 28, no. 1, pp. 193206, 2023.
- A. E. Journal, P. V. P. P. Vpp, C. C. By, and E. M. S. Vpp, A Novel Method to Manage the Electrical Energy Profile in Iraq: Virtual Power Plant (VPP), vol. 26, no. 2, pp. 150157, 2021.
- A. Kalam, J. Chakrabarti, and R. Muttucumaru, Genetic algorithm approach for load shedding in an industrial cogeneration power plant, IECON Proc. (Industrial Electron. Conf., vol. 2, pp. 848851, 1996, doi: 10.1109/iecon.1996.565988.
- A. M. A. Haidar, A. Mohamed, M. Al-Dabbagh, and A. Hussain, Vulnerability Assessment and control of large scale interconnected power systems using neural networks and neuro-fuzzy techniques, 2008 Australas. Univ. Power Eng. Conf. AUPEC 2008, no. June 2014, 2008.
- A. Parizad, H. Khoshkhoo, S. Dehghan, and R. Moradtalab, An intelligent load and generation shedding procedure in an islanded network using a smart power management system, IEEE Proc. 2017 Smart Grid Conf. SGC 2017, vol. 2018-Janua, pp. 112, 2018, doi: 10.1109/SGC.2017.8308834.
- A. Parsa, T. A. Najafabadi, and F. R. Salmasi, A hierarchical smart home control system for improving load shedding and energy consumption: Design and implementation, IEEE Sens. J., vol. 19, no. 9, pp. 33833390, 2019, doi: 10.1109/JSEN.2018.2880867.
- A. Rajasekhar, R. K. Jatoth, A. Abraham, and V. Snasel, A Novel Hybrid ABF-PSO algorithm Based Tuning of Optimal FOPI Speed Controller for PMSM Drive, pp. 320325, 2011.
- A. Saffarian and M. Sanaye-Pasand, Enhancement of power system stability using adaptive combinational load shedding methods, IEEE Trans. Power Syst., vol. 26, no. 3, pp. 10101020, 2011, doi: 10.1109/TPWRS.2010.2078525.
- B. F. Rad and M. Abedi, An optimal load-shedding scheme during contingency situations using meta-heuristics algorithms with application of AHP method, 11th Int. Conf. Optim. Electr. Electron. Equipment, OPTIM 2008, pp. 167173, 2008, doi: 10.1109/OPTIM.2008.4602361.
- B. Giyoev and Y. Artsishevsky, Load Shedding Devices in Distributed Generation: A Review, 2018 14th Int. Sci. Conf. Actual Probl. Electron. Instrum. Eng. APEIE 2018 - Proc., pp. 119123, 2018, doi: 10.1109/APEIE.2018.8545606.
- C. Andersson, J. E. Solem, and B. Eliasson, Classification of power system stability using support vector machines, 2005 IEEE Power Eng. Soc. Gen. Meet., vol. 1, no. 2, pp. 650655, 2005, doi: 10.1109/pes.2005.1489266.
- C. Concordia, L. H. Fink, and G. Poullikkas, Load Shedding on an Isolated System, IEEE Trans. Power Syst., vol. 10, no. 3, pp. 14671472, 1995, doi: 10.1109/59.466502.
- C. Li et al., Continuous Under-Frequency Load Shedding Scheme for Power System Adaptive Frequency Control, IEEE Trans. Power Syst., vol. 35, no. 2, pp. 950961, 2020, doi: 10.1109/TPWRS.2019.2943150.
- C. N. Raghu and A. Manjunatha, Assessing Effectiveness of Research for Load Shedding in Power System, vol. 7, no. 6, pp. 32353245, 2017, doi: 10.11591/ijece.v7i6.pp3235-3245.
- C. S. Chen, Protective relay setting of the tie line tripping and load shedding for the industrial power system, IEEE Trans. Ind. Appl., vol. 36, no. 5, pp. 12261234, 2000, doi: 10.1109/28.871268.
- C. S. Chen, Y. D. Lee, C. T. Hsu, and H. J. Chuang, Design of undervoltage relay setting for an industrial plant with cogeneration units to enhance power quality of critical loads, IEEE Trans. Ind. Appl., vol. 44, no. 4, pp. 12951302, 2008, doi: 10.1109/TIA.2008.926057.
- C. T. Hsu, C. S. Chen, and J. K. Chen, The load-shedding scheme design for an integrated steelmaking cogeneration facility, IEEE Trans. Ind. Appl., vol. 33, no. 3, pp. 586592, 1997, doi: 10.1109/28.585846.
- C. Wester, T. Smith, J. Theron, and D. McGinn, Developments in fast load shedding, IEEE Conf. Rec. Annu. Pulp Pap. Ind. Tech. Conf., pp. 2833, 2014, doi: 10.1109/PPIC.2014.6871145.
- D. M. , L. O. U. C., and W. Chikong, Adaptive Under-Frequency Load Shedding, Tsinghua Sci. Technol., vol. 13, no. 6, pp. 823828, 2008, doi: 10.1016/S1007-0214(08)72207-7.
- D. Rwegasira, I. Ben Dhaou, and A. W. Kondoro, Load-shedding techniques : A comprehensive review Load-shedding techniques for microgrids : A comprehensive review, no. December, 2018, doi: 10.12720/sgce.8.3.341-353.
- E. am, Application of fuzzy logic for load frequency control of hydroelectrical power plants, Energy Convers. Manag., vol. 48, no. 4, pp. 12811288, 2007, doi: 10.1016/j.enconman.2006.09.026.
- E. E. Aponte and J. K. Nelson, Time optimal load shedding for distributed power systems, IEEE Trans. Power Syst., vol. 21, no. 1, pp. 269277, 2006, doi: 10.1109/TPWRS.2005.857826.
- E. J. Thalassinakis, E. N. Dialynas, and D. Agoris, Method combining ANNs and Monte Carlo simulation for the selection of the load shedding protection strategies in autonomous power systems, IEEE Trans. Power Syst., vol. 21, no. 4, pp. 15741582, 2006, doi: 10.1109/TPWRS.2006.879293.
- E. J. Thalassinakis, E. N. Dialynas, and S. Member, A Monte-Carlo Simulation Method for Setting the Underfrequency Load Shedding Relays and Selecting the Spinning Reserve Policy in Autonomous Power Systems, vol. 19, no. 4, pp. 20442052, 2004, doi: 10.1109/TPWRS.2004.835674
- F. Baiceanu, O. Ivanov, R. Beniuga, and B. Neagu, A Continuous Multistage Load Shedding Algorithm for Industrial Processes Based on Metaheuristic Optimization, 2023. doi: https://doi.org/10.3390/math11122684
- F. Boussadia and S. Belkhiat, A new adaptive underfrequency load shedding scheme to improve frequency stability in electric power system, J. Eur. des Syst. Autom., vol. 54, no. 2, pp. 263271, 2021, doi: 10.18280/JESA.540208.
- F. Croce et al., Operation and management of the electric system for industrial plants: An expert system prototype for load-shedding operator assistance, IEEE Trans. Ind. Appl., vol. 37, no. 3, pp. 701708, 2001, doi: 10.1109/28.924748.
- F. Zare, A. Ranjbar, and F. Faghihi, Intelligent topology-oriented load shedding scheme in power systems, ICEE 2019 - 27th Iran. Conf. Electr. Eng., pp. 652656, 2019, doi: 10.1109/IranianCEE.2019.8786519.
- G. L. Wilson and R. D. Dunlop, Frequency actuated load shedding and restoration: Part I philosophy, IEEE Trans. Power Appar. Syst., vol. PAS-90, no. 4, pp. 14521459, 1971, doi: 10.1109/TPAS.1971.293129.
- H. Awad and A. Hafez, Optimal operation of under-frequency load shedding relays by hybrid optimization of particle swarm and bacterial foraging algorithms, Alexandria Eng. J., vol. 61, no. 1, pp. 763774, 2022, doi: 10.1016/j.aej.2021.06.034.
- H. Bevrani, G. Ledwich, and J. J. Ford, On the use of df/dt in power system emergency control, 2009 IEEE/PES Power Syst. Conf. Expo. PSCE 2009, no. May 2014, 2009, doi: 10.1109/PSCE.2009.4840173.
- H. Chen, J. Zhuang, G. Zhou, Y. Wang, and Z. Sun, ScienceDirect Emergency load shedding strategy for high renewable energy penetrated power systems based on deep reinforcement learning, Energy Reports, vol. 9, pp. 434443, 2023, doi: 10.1016/j.egyr.2023.03.027.
- H. Chen, Y. Zhu, and K. Hu, Cooperative Bacterial Foraging Optimization, vol. 2009, 2009, doi: 10.1155/2009/815247.
- H. imen and M. Aydn, Optimal Load Shedding Strategy for Seluk University Power System with Distributed Generation, Procedia - Soc. Behav. Sci., vol. 195, pp. 23762381, 2015, doi: 10.1016/j.sbspro.2015.06.218.
- H. Mohamad, A. I. Isa, Z. M. Yasin, N. A. Salim, and N. N. A. M. Rahim, Optimal Load Shedding Technique for an Islanding Distribution System by Using Particle Swarm Optimization, pp. 154158.
- H. Mortaji, S. H. Ow, M. Moghavvemi, and H. A. F. Almurib, Load Shedding and Smart-Direct Load Control Using Internet of Things in Smart Grid Demand Response Management, IEEE Trans. Ind. Appl., vol. 53, no. 6, pp. 51555163, 2017, doi: 10.1109/TIA.2017.2740832.
- H. Saadat, Power System Analysis - Hadi Saadat -131008151901-phpapp02.pdf. pp. 151156, 2010.
- H. Seyedi and M. Sanaye-Pasand, New centralised adaptive load-shedding algorithms to mitigate power system blackouts, IET Gener. Transm. Distrib., vol. 3, no. 1, pp. 99114, 2009, doi: 10.1049/iet-gtd:20080210.
- H. Y. R. Perera and R. Rajapaksha, Under Frequency Load Shedding Based on Dynamic System Information, no. November, pp. 5963, 2015.
- J. A. Laghari, H. Mokhlis, A. H. A. Bakar, and H. Mohamad, Application of computationalintelligence techniques for load shedding in power systems: A review, Energy Convers. Manag., vol. 75, no. August 2003, pp. 130140, 2013, doi: 10.1016/j.enconman.2013.06.010.
- J. A. Laghari, H. Mokhlis, A. H. Abu Bakar, and H. Mohamad, A fuzzy based load frequency control for distribution network connected with mini hydro power plant, J. Intell. Fuzzy Syst., vol. 26, no. 3, pp. 13011310, 2014, doi: 10.3233/IFS-130816.
- J. M. Gers and E. J. Holmes, Protection of electricity distribution networks, 3rd edition. 2011.
- J. Tang, J. Liu, F. Ponci, and A. Monti, Adaptive load shedding based on combined frequency and voltage stability assessment using synchrophasor measurements, IEEE Trans. Power Syst., vol. 28, no. 2, pp. 20352047, 2013, doi: 10.1109/TPWRS.2013.2241794.
- J. Wang, H. Zhang, and Y. Zhou, Intelligent under Frequency and under Voltage Load Shedding Method Based on the Active Participation of Smart Appliances, IEEE Trans. Smart Grid, vol. 8, no. 1, pp. 353361, 2017, doi: 10.1109/TSG.2016.2582902.
- J. Yan, C. Li, and Y. Liu, Adaptive load shedding method based on power imbalance estimated by ANN, IEEE Reg. 10 Annu. Int. Conf. Proceedings/TENCON, vol. 2017-Decem, pp. 29962999, 2017, doi: 10.1109/TENCON.2017.8228375.
- K. Billewicz, Smart Meters and Under-Frequency Load Shedding, no. May, 2015,doi: 10.17265/1934-8975/2015.010.009
- K. Maresch, G. Marchesan, G. Cardoso, and A. Borges, An underfrequency load shedding scheme for high dependability and security tolerant to induction motors dynamics, Electr. Power Syst. Res., vol. 196, no. September 2020, p. 107217, 2021, doi: 10.1016/j.epsr.2021.107217.
- K. P. Brand and I. De Mesmaeker, Power System Protection. 2013. doi: 10.1002/9781118516072.ch12.
- K. Rajamani and U. Hambarde, Islanding and load shedding schemes for captive power plants, IEEE Power Eng. Rev., vol. 19, no. 1, p. 57, 1999, doi: 10.1109/pesw.1999.747309.
- K. U. Rao, S. H. Bhat, G. Jayaprakash, G. G. Ganeshprasad, and S. N. Pillappa, Time priority based optimal load shedding using genetic algorithm, IET Conf. Publ., vol. 2013, no. 645 CP, pp. 301308, 2013, doi: 10.1049/cp.2013.2187.
- L. Sigrist, I. Egido, and L. Rouco, A method for the design of UFLS schemes of small isolated power systems, IEEE Trans. Power Syst., vol. 27, no. 2, pp. 951958, 2012, doi: 10.1109/TPWRS.2011.2174448.
- L. T. Nghia, Q. H. Anh, P. T. Tan, and N. T. An, A hybrid artificial neural network-genetic algorithm for load shedding, Int. J. Electr. Comput. Eng., vol. 10, no. 3, pp. 22502258, 2020, doi: 10.11591/ijece.v10i3.pp2250-2258.
- M. A. Awadallah, B. Venkatesh, and S. Member, Bacterial Foraging Algorithm Guided by Particle Swarm Optimization for Parameter Identification of Photovoltaic Modules Algorithme de recherche de nourriture bactrienne guid par l optimisation par essaims particulaires pour l identification de param, vol. 39, no. 2, pp. 150157, 2016.
- M. A. Kabir, A. H. Chowdhury, and N. Al Masood, A dynamic-adaptive load shedding methodology to improve frequency resilience of power systems, Int. J. Electr. Power Energy Syst., vol. 122, no. March, p. 106169, 2020, doi: 10.1016/j.ijepes.2020.106169.
- M. Ahmadipour et al., Optimal load shedding scheme using grasshopper optimization algorithm for islanded power system with distributed energy resources, Ain Shams Eng. J., vol. 14, no. 1, p. 101835, 2023, doi: 10.1016/j.asej.2022.101835.
- M. Ghotbi-maleki, R. Mohammadi, and H. Javadi, Load shedding method aimed fast voltage recovery to prevent interference of FIDVR with UV relays, doi: 10.1049/gtd2.12846.
- M. Giroletti, M. Farina, and R. Scattolini, A hybrid frequency/power based method for industrial load shedding, Int. J. Electr. Power Energy Syst., vol. 35, no. 1, pp. 194200, 2012, doi: 10.1016/j.ijepes.2011.10.013.
- M. Karimi, P. Wall, H. Mokhlis, and V. Terzija, A New Centralized Adaptive Underfrequency Load Shedding Controller for Microgrids Based on a Distribution State Estimator, IEEE Trans. Power Deliv., vol.32, no. 1, pp. 370380, 2017, doi: 10.1109/TPWRD.2016.2594866.
- M. S. Pasand and H. Seyedi, New centralized adaptive under frequency load shedding algorithms, LESCOPE07 - 2007 Large Eng. Syst. Conf. Power Eng., pp. 4448, 2007, doi: 10.1109/LESCPE.2007.4437350.
- M. Salman and A. Nasir, Optimal policy for under frequency load shedding based on heterogeneous Markovian opinion dynamics model, Alexandria Eng. J., vol. 63, pp. 599611, 2023, doi: 10.1016/j.aej.2022.08.015.
- M. Sanaye-Pasand and M. Davarpanah, A new adaptive multidimensioanal load shedding scheme using genetic algorithm, Can. Conf. Electr. Comput. Eng., vol. 2005, no. May, pp. 19741977, 2005, doi: 10.1109/CCECE.2005.1557370.
- M. Sun, G. Liu, M. Popov, V. Terzija, and S. Azizi, Underfrequency Load Shedding Using Locally Estimated RoCoF of the Center of Inertia, IEEE Trans. Power Syst., vol. 36, no. 5, pp. 42124222, 2021, doi: 10.1109/TPWRS.2021.3061914.
- M. Talaat, A. Y. Hatata, A. S. Alsayyari, and A. Alblawi, A smart load management system based on the grasshopper optimization algorithm using the under-frequency load shedding approach, Energy, vol. 190, p. 116423, 2020, doi: 10.1016/j.energy.2019.116423.
- M. Tarafdar Hagh and S. Galvani, A multi objective genetic algorithm for weighted load shedding, Proc. - 2010 18th Iran. Conf. Electr. Eng. ICEE 2010, pp. 867873, 2010, doi: 10.1109/IRANIANCEE.2010.5506954.
- N. El, Y. Kouba, M. Menaa, M. Hasni, and M. Boudour, Optimal Load Frequency Control Based on Artificial Bee Colony Optimization Applied to Single , Two and Multi - Area Interconnected Power Systems.
- N. M. Sapari, H. Mokhlis, J. A. Laghari, A. H. A. Bakar, and M. R. M. Dahalan, Application of load shedding schemes for distribution network connected with distributed generation: A review, Renew. Sustain. Energy Rev., vol. 82, no. September 2017, pp. 858867, 2018, doi: 10.1016/j.rser.2017.09.090.
- N. T. Le, A. H. Quyen, A. N. Nguyen, B. T. T. Phan, A. T. Nguyen, and T. T. Phung, Application of dual artificial neural networks for emergency load shedding control, Int. J. Adv. Comput. Sci. Appl., vol. 11, no. 4, pp. 7482, 2020, doi: 10.14569/IJACSA.2020.0110411.
- O. Shariati, A. A. Mohd Zin, A. Khairuddin, M. Pesaran, and M. R. Aghamohammadi, An integrated method for under frequency load shedding based on hybrid intelligent system-part I: Dynamic simulation, Asia-Pacific Power Energy Eng. Conf. APPEEC, 2012, doi: 10.1109/APPEEC.2012.6307683.
- P. Lakra and M. Kirar, A comparison of under Frequency Relay based and Frequency Response model based Load Shedding scheme, 12th IEEE Int. Conf. Electron. Energy, Environ. Commun. Comput. Control (E3-C3), INDICON 2015, pp. 16, 2016, doi: 10.1109/INDICON.2015.7443312.
- P. Lakra and M. Kirar, Load Sheddingtechniques For System With Cogeneration: A Review, Electr. Electron. Eng. An Int. J., vol. 4, no. 3, pp. 8396, 2015, doi: 10.14810/elelij.2015.4307.
- P. Pinceti, Emergency load-shedding algorithm for large industrial plants, Control Eng. Pract., vol. 10, no. 2, pp. 175181, 2002, doi: 10.1016/S0967-0661(01)00113-7.
- P. Systems, R. Committee, I. Power, and E. Society, IEEE Std C37.117 - IEEE Guide for the Application of Protective Relays Used for Abnormal Frequency Load Shedding and Restoration, no. August. 2007.
- Q. He, S. Ma, J. Yi, and G. Bo, Research on the application of intelligent under-frequency/under-voltage load shedding considering demand response, China Int. Conf. Electr. Distrib. CICED, vol. 2016-Septe, no. Ciced, pp. 1013, 2016, doi: 10.1109/CICED.2016.7576176.
- Q. Wang, Y. Tang, F. Li, M. Li, Y. Li, and M. Ni, Coordinated scheme of under-frequency load shedding with intelligent appliances in a cyber physical power system, Energies, vol. 9, no. 8, 2016, doi: 10.3390/en9080630.
- R. Khezri, S. Golshannavaz, R. Vakili, and B. Memar-Esfahani, Multi-layer fuzzy-based under-frequency load shedding in back-pressure smart industrial microgrids, Energy, vol. 132, pp. 96105, 2017, doi: 10.1016/j.energy.2017.05.059.
- R. M. El Azab, E. H. Shehab Eldin, and M. M. Sallam, Adaptive under frequency load shedding using PMU, IEEE Int. Conf. Ind. Informatics, pp. 119124, 2009, doi: 10.1109/INDIN.2009.5195789.
- R. Makowski, Makowski, Nieznaski_2020_Underfrequency load shedding An innovative algorithm based on fuzzy logic.pdf, 2020.
- S. Hirodontis, S. Ioannou, and M. Raspopoulos, an Adaptive Load Shedding Method for Blackout Prevention in Active Distribution Networks, no. February, pp. 441446, 2021, doi: 10.1049/icp.2021.1227.
- S. J. Huang and C. C. Huang, Adaptiveapproach to load shedding including pumped-storage units during underfrequency conditions, IEE Proc. Gener. Transm. Distrib., vol. 148, no. 2, pp. 165171, 2001, doi: 10.1049/ip-gtd:20010020.
- S. M. S. Kalajahi, H. Seyedi, and K. Zare, Under-frequency load shedding in isolated multi-microgrids, Sustain. Energy, Grids Networks, vol. 27, p. 100494, 2021, doi: 10.1016/j.segan.2021.100494.
- S. Manson, G. Zweigle, and V. Yedidi, Case study: An adaptive underfrequency load-shedding system, IEEE Trans. Ind. Appl., vol. 50, no. 3, pp. 16591667, 2014, doi: 10.1109/TIA.2013.2288432.
- S. Meharkure and N. Kinhekar, Smart Monitoring of Automatic under Frequency Load Shedding (SMOAUFLS), 2020 Int. Conf. Emerg. Technol. INCET 2020, pp. 16, 2020, doi: 10.1109/INCET49848.2020.9154152.
- S. Padron, M. Hernandez, and A. Falcon, Reducing under-frequency load shedding in isolated power systems using neural networks. Gran Canaria: A case study, IEEE Trans. Power Syst., vol. 31, no. 1, pp. 6371, 2016, doi: 10.1109/TPWRS.2015.2395142.
- S. Roy et al., Application of Modified Particle Swarm a complex Micro Grid with Renewable Energy Sources, 2018 2nd Int. Conf. Trends Electron. Informatics, no. Icoei, pp. 7783, 2018.
- S. S. Patnaik and A. K. Panda, Particle Swarm Optimization and Bacterial Foraging Optimization Techniques for Optimal Current Harmonic Mitigation by Employing Active Power Filter, vol. 2012, 2012, doi: 10.1155/2012/897127.
- S. Saboune, A. A. Ladjici, and A. Tiguercha, Optimal adaptive under frequency load shedding using Neuro-Evolution Algorithm, Proc. 2018 3rd Int. Conf. Electr. Sci. Technol. Maghreb, Cist. 2018, no. 2, pp. 14, 2019, doi: 10.1109/CISTEM.2018.8613568.
- T. Amraee, B. Mozafari, and A. M. Ranjbar, An improved model for optimal under voltage load shedding: Particle swarm approach, 2006 IEEE Power India Conf., vol. 2005, pp. 723728, 2005, doi: 10.1109/POWERI.2006.1632597.
- T. Landolsi, A. R. Al-Ali, T. Ozkul, and M. A. Al-Rousan, Wireless distributed load-shedding management system for non-emergency cases, World Acad. Sci. Eng. Technol., vol. 62, no. 2, pp. 18, 2010.
- T. Shekari, A. Gholami, F. Aminifar, and M. Sanaye-Pasand, An Adaptive Wide-Area Load Shedding Scheme Incorporating Power System Real-Time Limitations, IEEE Syst. J., vol. 12, no. 1, pp. 759767, 2018, doi: 10.1109/JSYST.2016.2535170.
- T. Shekari, F. Aminifar, and M. Sanaye-Pasand, An analytical adaptive load shedding scheme against severe combinational disturbances, IEEE Trans. Power Syst., vol. 31, no. 5, pp. 41354143, 2016, doi: 10.1109/TPWRS.2015.2503563.
- T. Skrjanc, R. Mihalic, and U. Rudez, A systematic literature review on under-frequency load shedding protection using clustering methods, Renew. Sustain. Energy Rev., vol. 180, no. April, p. 113294, 2023, doi: 10.1016/j.rser.2023.113294.
- U. Rudez and R. Mihalic, Analysis of underfrequency load shedding using a frequency gradient, IEEE Trans. Power Deliv., vol. 26, no. 2, pp. 565575, 2011, doi: 10.1109/TPWRD.2009.2036356.
- V. Tamilselvan and T. Jayabarathi, A hybrid method for optimal load shedding and improving voltage stability, Ain Shams Eng. J., vol. 7, no. 1, pp. 223232, 2016, doi: 10.1016/j.asej.2015.11.003.
- V. V. Terzija, Adaptive underfrequency load shedding based on the magnitude of the disturbance estimation, IEEE Trans. Power Syst., vol. 21, no. 3, pp. 12601266, 2006, doi: 10.1109/TPWRS.2006.879315.
- W. Helmy, Y. G. Hegazy, M. A. Mostafa, and M. A. Badr, Implementing distributed generation to mitigate under-frequency load shedding, 2008 12th Int. Middle East Power Syst. Conf. MEPCON 2008, pp. 136140, 2008, doi: 10.1109/MEPCON.2008.4562369.
- W. M. Al-Hasawi and K. M. El Naggar, Optimum steady-state load-shedding scheme using genetic based algorithm, Proc. Mediterr. Electrotech. Conf. - MELECON, vol. 1, pp. 605609, 2002, doi: 10.1109/melecon.2002.1014664.
- W. M. T. Vijayananda, K. Samarakoon, and J. Ekanayake, Development of a demonstration rig for providing primary frequency response through smart meters, Proc. Univ. Power Eng. Conf., no. March 2014, 2010.
- W. Nur and E. Afif, Optimal Load Shedding using Bacterial Foraging Optimization Algorithm, pp. 1920, 2013, doi: 10.1109/ICSGRC.2013.6653282
- W. Tan, C. Shen, X. Zhang, and J. Ni, A new under-frequency load shedding scheme based on OBDD, 1st Int. Conf. Sustain. Power Gener. Supply, SUPERGEN 09, pp. 15, 2009, doi: 10.1109/SUPERGEN.2009.5348375.
- Y. Hong and S. Member, Under-frequency Load Shedding in a Standalone Power System with Wind-turbine Generators Using Fuzzy PSO, vol. 8977, no. c, 2021, doi: 10.1109/TPWRD.2021.3077668.
- Y. Hong and S. Wei, Multiobjective Underfrequency Load Shedding in an Autonomous System Using Hierarchical, vol. 25, no. 3, pp. 13551362, 2010, doi: 10.1109/TPWRD.2010.2046679
- Y. Hong, S. Member, and M. Nguyen, Multiobjective Multiscenario Under-Frequency Load Shedding in a Standalone Power System, IEEE Syst. J., vol. PP, pp. 111, 2019, doi: 10.1109/JSYST.2019.2931934.
- Y. Hong, S. Member, and P. Chen, Genetic-Based Underfrequency Load Shedding in a Stand-Alone Power System Considering Fuzzy Loads, vol. 27, no. 1, pp. 8795, 2012.
- Y. Pei, F. Wu, J. Yang, J. Wang, P. Xu, and T. Zhou, An emergency control strategy for undervoltage load shedding of power system : A graph deep reinforcement learning method, no. February, pp. 21302141, 2023, doi: 10.1049/gtd2.12795.
- Y. Tofis, L. Hadjidemetriou, and E. Kyriakides, An intelligent load shedding mechanism for maintaining frequency stability, 2013 IEEE Grenoble Conf. PowerTech, POWERTECH 2013, 2013, doi: 10.1109/PTC.2013.6652296.