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Abstract

The present study investigates the potential of Radial Basis
Function (RBF)  neural networks for the prediction of reference
evapotraspiration (ETo). The study utilizes daily climatic data of
temperature, relative humidity, sunshine hours, wind speed, and rainfall
for five years collected from Mosul meteorological station, north of Iraq.
Thirteen RBF networks each using varied input combination of climatic
variables have been trained and tested. The network output is compared
with estimated daily Penman-Monteith ETo values. To evaluate the
performance of RBF networks, the same networks in the studied cases
were re-trained using the well-known feedforward-backpropagation (FF-
BP) networks. In addition, the effect of including a time index within the
inputs of considered networks is investigated.

The study shows that the RBF network is seen to emulate the FF-
BP in its performance and can be effectively used for ETo prediction.
Besides, it is much easier to built and much faster to train. It is noticed
that the networks’ output are very highly correlated to estimated ETo,
especially when concerning all the climatic parameters. The study results
reveal that adding a time index to the inputs highly improves the ETo
prediction of the studied cases.

Keywords: Radial Basis Networks, reference evapotranspiration, climatic
data.
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Introduction

Accurate estimation of the reference crop evapotranspiration
(ETo) is an important part of many studies such as hydrologic water
balance, and water resources planning and management.
Evapotranspiration can be either measured with a lysimeter or water
balance approach, or estimated indirectly from climatic data. Most of the
models that developed to predict ETo using the climatic data as an input
are empirical in nature due to the difficulties of the nonlinear model
structure identification and parameter estimation of the complex
evapotranspiration process. The Food and Agricultural Organization of
the United Nations (FAO) developed a practical procedure to estimate
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crop water requirements [1] which is widely accepted as a standard,
especially in irrigation studies.

The methods used to estimate ETo vary from empirical
relationships to complex methods based on physical processes such as
Penman combination  method [2], which links evaporation dynamics with
the flux of net radiation and aerodynamic transport characteristics of a
natural surface. Monteith [3] introduced a surface conductance term that
accounted for the response of leaf stomata to its hydrologic environment.
This modified form of the Penman equation is widely known as the
Penman-Monteith (PM) evapotranspiration model. This modified method
is ranked as the best method for all climatic conditions in a study
conducted by [4] to analyze the performance of 20 different methods
against lysimeter measured ET for 11 stations located in different climatic
zones around the world. Moreover, the latest modification of this method
was presented by the FAO [5].

The Artificial Neural Network (ANN) is a computing paradigm
designed to mimic the human brain and nervous system [6]. It is a
mathematical structure, which is capable in representing arbitrarily
complex nonlinear processes that relate the inputs and outputs of any
system. ANN models have been used successfully to model complex
nonlinear input/output time series relationships in a wide variety of fields.
The high degree of empiricism and approximation in the analysis of
hydrologic systems may find the use of ANN highly suitable [7].

In recent years, the Artificial Neural Networks (ANNs) have been
successfully applied to the modeling and forecasting of hydrological
processes. In the hydrological forecasting context, recent papers have
reported that ANNs may offer a promising alternative for rainfall-runoff
modeling [6]; streamflow prediction [8]; reservoir inflow forecasting [9];
prediction of water quality parameters [10]; estimation of reference
evapotranspiration [11], and forecasting reference evapotranspiration
[12]. These applications utilize different types of neural networks, but one



thing they have in common is that they give better results than the
conventional models they are compared to.

There are several types of models available for ANN application,
but the feedforward networks (FF) trained with the Back-propagation
(BP) algorithm is the most prominent used for hydrologic modeling [13].
Fernando and Jayawardena [14] reported that the Radial Basis Function
(RBF) type network is found to perform better than (FF) network trained
with BP algorithm. Park and Sandberg [15] proved that RBF networks
with one hidden layer are capable of universal approximation. However,
the application of RBF type neural networks to hydrological problems
still rare, but recently it is getting more attention due to its advantages
over FF networks.

This study aimed to investigate the potential of the RBF networks
to: (1) Predict the daily ETo values using various climatic parameters
with different combinations, (2) Compare the performance of RBF
networks to that of the feedforward–backpropagation networks, and (3)
To study the effect of introducing a time index as an additional input to
the studied networks.

Artificial Neural Networks (Anns)

An Overview

An ANN attempts to mimic, in a very simplified way, human
mental and neural structure and functions. It can be characterized as
massively parallel interconnections of simple neurons that function as a
collective system. The network topology consists of a set of nodes
(neurons) connected by links and usually organized in a number of layers.
Each node in a layer receives and processes weighted input from previous
layers and transmits its output to nodes in the following layer through
links. The weighted summation of inputs to a node is converted to an



output according to a transfer function. Each link is assigned a weight,
which is a numerical estimate of the connection strength. The basic
structure of an ANN usually consists of three layers: (1) the input layer,
where

the data are introduced to the network; (2) the hidden layer(s), where data
are processed; and (3) the output layer, where the results of given input
are produced. This type of network, where data flow is in one direction, is
known as a feed-forward network [16].

Training of Artificial Neural Networks

The process of determining ANN weights is called learning or
training and it is similar to calibration of a mathematical model. The
ANNs are trained with a training set of input and known output data. At
the beginning of training, the weights are initialized either with a set of
random values or based on previous experience. Next, the weights are
systematically changed by the learning algorithm such that, for a given
input, the difference between the ANN output and the actual output is
small. Many learning examples are repeatedly presented to the network,
and the process is terminated when this difference is less than a specified
value. At this stage, the ANN is considered trained. In the
backpropagation algorithm, a set of inputs and outputs is selected from
the training set and the network calculates the output based on the inputs.
This output is subtracted from the actual output to find the output-layer
error. The error is backpropagated through the network, and the weights
are suitably adjusted. This process continues for the number of prescribed
sweeps or until a prespecified error tolerance is reached. The mean square
error over the training samples is the typical objective function to be
minimized [17].

Radial-basis Function Networks



The back-propagation algorithm of a multi-layer feed-forward
ANN is a gradient descent algorithm that may terminate at a local
optimum, in addition to its long training time. This problem is overcome
in Radial-Basis Function (RBF) networks by incorporating the non-
linearity in the activation functions of the nodes of the hidden layer [18].

A radial basis function (RBF) network as described by Fu [19] is
a two-layer network (see Figure 3) whose output units form a linear
combination on the basis (kernel) functions computed by the hidden
units. The basis functions in the hidden layer produce a localized
response to the input. That is, each hidden unit has a localized receptive
field. The basis function can be viewed as the activation function in the
hidden layer. The most common basis function chosen is a Gaussian
function, in which case the activation level Oj of hidden unit j is
calculated by

Oj = exp [-(X-Wj).(X-Wj) / 2  j
2 ]

……………………………..…(1)

where X is the input vector, Wj is the weight vector associated with
hidden unit j (i.e., the center of the Gaussian function), and  2 is the
normalization factor. The outputs of the hidden unit lie between 0 and 1;
the closer the input to the center of the Gaussian, the larger the response
of the node. Because the node produces an identical output for inputs
with equal distance from the center of the Gaussian, it is called a radial
basis.

The activation level Oj of an output unit is determined by

 ijij OWO

..…………………………………………………… (2)



where Wji is the weight from hidden unit i to output unit j. The output
units form a linear combination of the nonlinear basis functions, and thus
the overall network performs a nonlinear transformation of the input.

Figure (3): A schematic diagram of RBF network

Learning the RBF networks

Learning in the RBF network can be divided into two stages:
learning in the hidden layer, followed by learning in the output layer.
Typically, learning in the hidden layer is performed using unsupervised
methods (i.e., does not depend on teaching patterns) such as the k-means
clustering algorithm (clustering is concerned with grouping objects
according to their similarity), while learning in the output layer uses
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supervised methods like the least mean square (LMS) algorithm. After
the initial solution is found by this approach, a supervised learning
algorithm (e.g., back-propagation) can be applied to both layers to fine-
tune the parameters of the network, since the clustering algorithm does
not guarantee an optimal set of parameters for the basis functions.

The normalization factor  represents a measure of the spread of
the data in the cluster associated with the hidden unit.  It is commonly
determined by the average distance between the cluster center and the
training instances in that cluster. That is, for hidden unit j


mj
12 ( jCX  ).( jCX  ) ……………………….……

(3)

where X is a training pattern in the cluster, Cj is the center of the cluster
associated with hidden unit j, and m is the number of training instances in
that cluster [19].

The main difference between the RBF network and the feed-
forward back-propagation network is in their basis function. The radial
basis function in the former network covers only small regions, whereas
the sigmoid function assumes nonzero values over an infinitely large
region of the input space. For some problems, sigmoid basis functions
provide better results, but for others, radial basis functions are more
advantageous [18].

Materials And Methods

For the purpose of this study, daily climatic data of minimum and
maximum temperature (oC), average relative humidity (%), wind speed
(m/s), sunshine hours (hr), and rainfall (mm) for Mosul Meteorological
station (36o 91  latitude, 43o 90  longitude and elevation of 222.6 m asl)
was collected for five years (January 1, 1996 to December 31, 2000).



Daily ETo values were estimated using the Penman-Monteith (PM)
method which is proposed as the sole standard method for the
computation of reference evapotranspiration [12]. Because of the
unavailability of the lysimeter measured values, the estimated ETo values
are considered as a standard and used for training and validation of
different architectures of ANN. The total input data (1826 patterns) is
divided into two parts, the data of four years (1460 patterns) is considered
for training and the remaining one year data (366 patterns) is used for
validation [17].

Data Standardization

The neural network training can be made more efficient if certain
preprocessing steps are performed on the network inputs and targets. It is
often useful, before training, to scale the inputs and targets so that they
always fall within a specified range. In the present study, the input and
output data have been scaled to make it bounded in the intervals -1 and
+1, which is preferable when tan-sigmoid activation function is used in
the network [20]. The standardization equation can be represented as:

1
)XX(
)XX(2Z

minmax

mini 





……………………………………………(4)

where Z is standardized input values lying in the range of [-1, +1], and
minX and maxX are minimum and maximum input values, respectively.

After simulation, all the output values are de-standardized by multiplying
with the respective standardization factor to get actual ETo values. This
step helps the neural network training to be more efficient [21]. Both the
FF-BP and RBF networks considered in this study are built and trained
using the NN-Tool which is one of the MATLAB (Release 12) package
tools.



Results And Discussion

It is aimed here to study the potential of the RBF networks for
the prediction of the daily ETo values using various climatic parameters.
Several networks were built utilizing various combinations of these
parameters as an input. The estimated daily ETo using the PM method
considered as the output for all presented networks. These combinations
are listed in Table (1) and Table (2) which included ١٣ various
cases/combinations. These cases were gathered in groups according to the
number of input parameters and the type of parameters to ease the
performance evaluation process of the networks. Each climatic parameter
in these cases is presented by an input node in the first layer of the neural
network model.

The performance evaluation process included two statistical
methods, i.e., correlation coefficient (R) and the mean square error
(MSE). The MSE values are shown for both training and validation
phases. The proper spread values and the maximum number of hidden
nodes are estimated by trial and error method as there are no defined
guidelines to assign their values. A massive number of trials were carried
out using different combinations of spread and maximum hidden nodes
number and the combinations which gave the best network performance
are listed in Table (1).

Table (1). Result of training and validation of best RBF networks due to
different

inputs of climatic parameters

Case
No. Inputs

MSE R

MN● Sprea
dTrainin

g
Validati

on
Traini

ng
Validati

on

1 AvT 1.6058 1.3097 0.8855 0.9046 4 1



2 MinT, MaxT 1.5701 1.2357 0.8882 0.9082 5 1

3 MinT, MaxT, AvT 1.5516 1.2526 0.8896 0.9062 7 1

4 MinT, MaxT, Sunh 1.1469 0.9821 0.9197 0.9278 10 1

5 MinT, MaxT, Wind 0.4055 0.4096 0.9723 0.9700 31 1

6 MinT, MaxT, Avh 1.5103 1.1535 0.8927 0.9164 6 1

7 Wind, Sunh 1.1747 1.3700 0.9176 0.8980 29 1

8
MinT, MaxT, Avh,

Sunh
1.0591 0.9499 0.9260 0.9316 25 0.8

9
MinT, MaxT, Avh,

Wind
0.3680 0.3878 0.9749 0.9716 100 15

10
MinT, MaxT, Avh,

Wind, Sunh
0.1135 0.1585 0.9923 0.9888 110 0.9

Note : AvT=average temperature (oC), MinT=minimum temperature (oC),
MaxT=maximum temperature (oC), Sunh=sunshine hours (hr),
Wind=average wind speed (m/s), and Avh=average relative
humidity (%).

● Maximum hidden nodes number.

The first group in the table included three cases which utilized
the data of maximum temperature (MaxT), minimum temperature (MinT),
and the average temperature (AvT) of MaxT and MinT. The results
revealed that there are no major differences in the performance of the
three networks, and the network which utilizes both the MaxT and MinT
reveals the best performance compared to other two cases as shown in
validation phase R and MSE values. In addition, it is seen that the number
of nodes in the hidden layer increases with the increase of input
parameters.

Cases 4, 5, and 6 investigated the effect of including the
Sunshine hours (Sunh), wind speed (Wind), and average humidity (Avh)



to the network inputs which already contained the MaxT and MinT. The
network which contained the wind speed performed better than other
networks which contained the Avh or the Sunh. Additionally, the network
which contained the data of sunshine hours has a better performance than
the network that contained the average humidity as shown in validation
MSE and R values (MSE of 1.1535, 0.9821, and 0.4096 and R values of
0.9164, 0.9278, and 0.9700 for the networks containing average
humidity, sunshine hours and wind speed, respectively). In contrast, this
network required more hidden layer nodes to give its best results (31
nodes) as compared to 10 and 6 nodes needed for networks containing
Sunh or Avh, respectively, which reveals the intricacy of this relation.

With regard to outcomes of case 7, it is not promoting to exploit
the wind speed and the sunshine hours without incorporating the
temperature data in the network as it is evident in validation MSE of 1.37
which is the highest among the other cases.

The other group consisted of cases 8, 9, and 10 which have the
MaxT, MinT and Avh in common. Case 8 showed that including the
sunshine hours enhanced the network performance (validation MSE is
0.95 compared to 1.1535 for case 6 with decrease of 17.64%), while
including the wind speed instead of sunshine hours (case 9) resulted in a
validation MSE decrease of 66.38% w.r.t case 6. However, the results
showed that it is preferable to use both the wind speed and sunshine hours
in the same network (i.e., case 10) which its performance was superior to
the  previous  networks  as  shown  in   Figure (4a) (validation MSE
decreased by 86.3% and the validation R values increased by 8% w.r.t
case 6). Conversely, the number of the hidden layer nodes in case 10 was
the highest comparing to the previous cases (excluding case 9) which is
an evident to the complexity of the relation comparing to other cases.

Effect of Introducing Rainfall Data



To study the effect of including the daily rainfall data as an
input to the network, three networks out of the 10 studied cases were
selected as shown in Table (2). The performance of networks 11, 12, and
13 were compared to the performance of networks 2, 5, and 10,
respectively. It is shown that the cases 11 and 12 have a slight decrease in
validation MSE value (i.e., 2.08% and 0.39%) w.r.t cases 5 and 10,
respectively, which is not a considerable improvement. On the other
hand, the performance of case 11 showed a drawback as compared to the
performance of case 2. The results reveal that there is no significant effect
for including the rainfall data on the improvement of network
performance. Therefore, it is not encouraging to employ the rainfall data
in the relations of ETo prediction.

Table (2). Results of training and validation of including the rainfall data
as an input to three selected networks

Case
No. Inputs

MSE R
MN

●
Sprea

dTraini
ng

Validati
on

Traini
ng

Validati
on

11 MinT, MaxT, Rain 1.5775 1.2474 0.8876 0.9075 5 1

12
MinT, MaxT,
Wind, Rain

0.4092 0.4080 0.9721 0.9702 31 1

13
MinT, MaxT, Avh,
Wind, Sunh, Rain

0.1149 0.1550 0.9922 0.9890 110 1

● Maximum hidden nodes number.



A Comparison between the RBF and FF-BP Network Performance

To evaluate the performance of RBF networks, the very same
cases considered in Table (1) were taken into consideration using FF
networks, and the results are showed in Table (3). Numerous trials have
been carried out to estimate the number of epochs needed to  train  the
FF  networks  and  to  obtain  the  best performance. It was noticed that
using 50 epochs for the FF network training tend to result in best network
performance. As the epoch number is fixed, it is tried to estimate the
proper number of hidden nodes in each studied case which gives the
minimum MSE and maximum R. For this task, and as described by [7],
the training process is usually started with a small number of nodes then
the number is increased gradually until no improvement in network
performance due to increasing the nodes is noticed, then the final
structure of the network is set.

Table (3). Result of training and validation of best FF-BP networks due to
different inputs of climatic parameters

Case
No. Inputs

MSE R

HN Epoch
sTrainin

g
Validat

ion
Trainin

g
Validat

ion

1 AvT 1.6032 1.3313 0.8857 0.9031 3 50

2 MinT, MaxT 1.5176 1.2656 0.8921 0.9062 3 50

3 MinT, MaxT, AvT 1.5526 1.2586 0.8895 0.9072 4 50

4 MinT, MaxT, Sunh 1.0885 0.9590 0.9239 0.9298 7 50

5 MinT, MaxT, Wind 0.4118 0.9339 0.9719 0.9708 7 50



6 MinT, MaxT, Avh 1.5564 1.1650 0.8892 0.9153 3 50

7 Wind, Sunh 1.2102 1.3498 0.9150 0.8998 6 50

8
MinT, MaxT, Avh,

Sunh 1.1051 0.9377 0.9227 0.9312 3 50

9
MinT, MaxT, Avh,

Wind 0.3506 0.3655 0.9761 0.9733 10 50

10
MinT, MaxT, Avh,

Wind, Sunh 0.1529 0.1420 0.9897 0.9902 5 50

 Hidden layer nodes number.

A comparison of FF network results (Table 3) to the results of
RBF networks (Table 1) reveals that the performance of FF and RBF
networks in all cases are very close. In addition, it is noticeable that the
RBF networks needed much more hidden nodes than the FF networks.
However, FF network shows slightly better performance both in the
training and verification periods than the RBF Network, but the FF
network needs relatively longer time to tune the training parameters and
train the network. The results demonstrated that the RBF networks are
emulative to the conventional FF networks in its performance and it is
much easier to deal with.

Effect of Introducing a Time Index

In order to represent the evapotranspiration data as a time series,
an additional input node representing the month number throughout the
year has been incorporated in each of the input structures discussed
previously and the networks are re-trained while keeping the spread and
maximum number of nodes the same for all cases (Table 4).

Table (4). Result of training and validation of best RBF networks due to
different inputs of climatic parameters including a monthly
time index



Case
No. Inputs

MSE R

MN● Spre
adTrainin

g
Validat

ion
Traini

ng
Validat

ion

1 AvT, TI 1.1761 0.8441 0.9175 0.9386 4 1

2 MinT, MaxT, TI 1.0438 0.7662 0.9272 0.9444 5 1

3
MinT, MaxT, AvT,

TI 0.9974 0.7287 0.9305 0.9483 7 1

4
MinT, MaxT, Sunh,

TI 0.8939 0.7381 0.9380 0.9481 10 1

5
MinT, MaxT, Wind,

TI 0.1073 0.1112 0.9928 0.9920 31 1

6 MinT, MaxT, Avh, TI 0.9263 0.7552 0.9356 0.9490 6 1

7 Wind, Sunh, TI 0.1817 0.2299 0.9877 0.9847 29 1

8
MinT, MaxT, Avh,

Sunh, TI 0.7635 0.6653 0.9473 0.9561 25 0.8

9
MinT, MaxT, Avh,

Wind, TI 0.0780 0.0953 0.9947 0.9931 100 15

10
MinT, MaxT, Avh,

Wind, Sunh, TI 0.0163 0.0263 0.9989 0.9981 100 0.9

● Maximum hidden nodes number.  Monthly time index

In all studied cases, there are noticeable improvements in both R
and MSE values compared to the results of cases without time index. The
cases may not be equally affected by adding the additional parameter but
it is noticed that this effect is higher when more input parameters are
included. The decrease in MSE values due to incorporating time index for
validation phase is ranged between 24.84% (case 4) up to 83.6% (case
10) and validation R values increased in the range of 2.18% for case 4 up



to 9.65% for case 7. The time index effect is illustrated in Figure (4) for
case 10 (Table 4) as an example.
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Figure (4). Time series plots (a and c) and scatter plots (b and d) of
validation phase (case 10) for the standard and predicted ETo
values in mm/day, (a and b) without time index, (c and d) with
time index.

Conclusions

The RBF network is employed here to predict the daily ETo values using
various climatic data. The analysis of the results of the study signified
that the RBF networks have the ability to be used for ETo prediction
studies. It is proved that the BRF networks emulate the FF-BP networks
in performance. On the other hand, RBF networks have the advantage of
being easy to build and much faster to train.

The results showed that using both maximum and minimum
temperature data is better than using the average temperature. Obvious
improvement is also noticed when the wind speed data is included within
the network inputs, which already contains the maximum and minimum
temperature data. This would be helpful to predict ETo values when less
climatic parameters are available.  However, best results are obtained
when all considered climatic parameters are included as the network
inputs. In addition, no significant improvement on network performance
is noticed when incorporating the rainfall as an input for network.



It is seen that there is a valuable effect for including a monthly
time index to the inputs, which led to obvious improvement in all studied
cases. Therefore, the use of a time index is highly recommended for
future research works.
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