Implementation of MAC Units on FPGAs for DSP
Architecture

Shavan K. Asker

ECE Dept., College of Eng., University of Dohuk

Abstract

This paper is an attempt to design and implement MAC (multiply-
accumulate) units for pipeline DSP architectures on FPGAs. An
application has been chosen to evaluate the results of the architecture.
Results show that these units are applicable and can be used by the
developers especially by the lifting based discrete wavelet transform.

Keywords: MAC unit, FPGAs, Architecture.

FPGA (/& MAC 4aS) il qupal) cilas g 345

b 1) 5L dallas 4y jlaral

S JlasS ol

A gas aala _ Aeurigh 4

LAY
[(pipelining) zluY) Laa fase Gk
CSan g (aadaill ALE 3o ol o3 oL il & jeda) apaaill 138 il il (Guadal LA o3
bl e adiaall Loy gall 0 sail) Cilindat Jlae 8 Lals (sl U (g Lgaladin
2800

1. Introduction

Threswsvaber vagdneazotly of products that includeejasac2domarol digital
signal processing has grown dramatically over the last years. DSP has
become a key component in many consumers, communications, medical,
and industrial products. These products use a variety of hardware
approaches to implement DSP, ranging from the use of off-the-shelf

microprocessors to field-programmable gate arrays (FPGAs) to custom
integrated circuits (ICs). Programmable “DSP processors,” a class of
microprocessors optimized for DSP, are a popular solution for several
reasons. In comparison to fixed-function solutions, they have the
advantage of potentially being reprogrammed in the field, allowing
product upgrades or fixes. They are often more cost-effective (and less
risky) than custom hardware, particularly for low-volume applications,
where the development cost of custom ICs may be prohibitive. And in
comparison to other types of microprocessors, DSP processors often have
an advantage in terms of speed, cost, and energy efficiency [1].

Digital signal processing applications require high computational
performance due to their real-time characteristics. There are many
implementation media available for signal processing. These
implementations vary in terms of programmability from fixed-
functionality hardware like ASICS to fully programmable like general-
purpose processors. The emergence of the new architecture, which offers
the same computational attributes as fixed-functionality architectures in a
package that can be customized in the field, is driven by a need for real-

time performance within the given operational parameters of a target
system and a need to adapt to changing data sets, computing conditions,
and execution environments of DSP applications. In this paper we used
three main 1deas VHDL, architecture pipelining, and implementation of
FPGAs. More details on FPGAs can be found in [2].

Very high speed integrated circuit Hardware Description Language
(VHDL) can be used to model a digital system at many levels of
abstraction, ranging from algorithmic level to the gate level. The
complexity of the digital system being modeled could vary from that of a
simple gate to a complete digital electronic system. The digital system
can also be described hierarchically, timing can also be explicitly
modeled in the same description. The VHDL language can be regarded as
an integrated combination of the following languages; Sequential
language, Concurrent language, Netlist language, Timing specifications,
and Waveform generation language [3,4].

A field programmable gate array (FPGA) is a programmable logic
device that supports implementation of relatively large logic circuits.
FPGAs provide logic blocks for implementation of the required function,
they can be used in all applications that use small-scale integration (SSI),
medium scale integration (MSI) and PLDs. They also replace mask-
programmable gate arrays in many applications that are limited to 10.000
gates and that do not require very high operational speed [5,6,7]. FPGA is
a Very Large Scale Integration (VLSI) module and is considered as an
extension of mask programmable gate array (MPGA). FPGA technology
was derived from MPGA technology but MPGAs provide greater gate
densities and clock speed than FPGAs and are non-volatile [8]. This
design has been simulated using the modelsim software then
implemented on FPGA kit of the model XC4003E.

2. A DSP-Type Architecture for Lifting
A filter independent DSP-type parallel architecture has been proposed by

Martina, Masera, Piccini, and Zamboni [9]. The architecture consists of
N, =max, {k.k, |} number of MAC (multiply-accumulate) units, where &,

and k, are length of the primal and dual lifting filters s, and ¢

respectively in step i of lifting factorization. The architecture is shown in
Figure 1.

Input stream

Input stream

\/ nYa
MAC1 MAC2 MACN

\ MUX / Input stream

v v
ROUND Programmable

A 4 -

Output stream

Figure 1: Parallel MAC architecture for lifting.

The above architecture is designed to compute », simultaneous partial
convolution products selected by the multiplexer (MUX), where #, is the

length of filter tap for the lifting step being currently executed in the
architecture. After », clock cycles, the first filtered sample is available for

rounding operation at the output of the first M4C1 and subsequent

samples are obtained in consecutive clock cycles from the subsequent
MAC units (MAC2,...,MAC,). The “programmable delay” is a buffer that
guarantees the subtraction consistency to execute corresponding a,,[/]
and d,,[;] samples at the output. The Round unit in Figure (1) computes

the floor function and the SUB unit processes the corresponding
subtraction operations. The input sample stream (a two dimensional
image) are stored into a RAM in four sub-sampled blocks in order to
properly address the row-wise and column-wise processing of the image
for 2-D lifting DWT implementation. A detailed memory addressing
scheme and their access patterns have been discussed in great detail in
[9,10].

3. MAC Unit Design and Implementation
The design is a multifunction pipeline that can perform different

functions at different times upon program control or firmware control.
We present a four-function pipeline proposed by Kamal, this pipeline can
perform multiply, divide, squaring, and square root operations. Two types
of cells building are used in this four-function pipeline construction. The
two cell types are specifies in figures (2) and (3) by Boolean equations.
The A cell is a controlled 1-bit adder subtractor with bypass signal lines.
The K cells are for function selection and boundary carry control.

A

C l
B s Arithmetic cell
4—

(Acell)

- S=(A+(B+X)+C;)F+AF

v
M X

v

Co=(B+X)(A+C))+AC;

I

Control cell

X > > X
p —» ——> F
Co < F=X(‘;+PX < Ci

Figure 3. The K cell which is used in the construction of the
four-function arithmetic pipeline.

The schematic design of four-function pipeline with A cells and K cells,
which is implemented using VHDL is shown in figure (4). Arithmetic
computations are specified as the following relationships:

P2P1Po X
A Aq

vV
AN

Multiply operation

(B2B1Bo)X(P2P1)=(S6S554S3S,)

With these conditions: X=0; P,=0; C,C,Cy= B,B;B,
Divide operation
(AsA4A3A,)/(B,BBy)=(CK,CK,CKy)

With these conditions: X=1; C,C,;Cy=B,B;B,
Squaring operation

(P1P2)°=(S6S554S3S2)
With these conditions: X=0; Py=0; C=B=P; (i=1,2)
C=B=0

Square rooting operation

JAAAALA A= (CK,CK,CK)y)

With these conditions: X=1; B;C;=00; B,C,=; B;C;=10

4. Results
We simulate the design using VHDL and to evaluate it and investigate

that the simulated design is working properly we test the design and
display the result as appeared in the VHDL program as shown in figures
(4,5,6,7) and the table(1) summarize the results as a table of values where
the first column represent the type of the operation performed and the
other columns represent the values of (A,S,X,P,CK,B,C) and each of
these values was mentioned in the past section.

Figure (5) shows the waveforms produced from the Multiply operation
that implemented on the design and these values in the waveform are
described in the first row of table(1) we can note that the value of X
should be equal to 0 and the multiply occur between PP, and B,B B,
where P; and B, is the MSB and the result is stored in S¢S5S4S5S,, Py
should be equal to the value of X also the C vector equal to the B vector.

Figure (6) and Figure (8) shows the waveforms produced from the Divide
and square root operations respectively and these values in the waveform
are described in the second and fourth rows of table(1). The value of X
should be equal to 1 in the divide and square root operations and the
result will be stored in CK,CK;CK, where CK, 1s the MSB. In the divide
operation the result is produced from the division of (As;A4A3A,) by
(B,BBy) and (B,B,By=C,C,C)) but in the square root operation B,C,=00,
B,C,=01, BoCy=10. Also in divide and square root operations the value of
P, only entered and PP, don't matter on the result.

Table (1): summary of the results (U mean Unspecified(don’t care))

OPERAT | X| S¢SsS4 | AsA4A3A | BoB; | C,C | PP, | CK,CK,C

IONS S5S; | 2A1A By 1Co |Po | Ky
MULTIP | 0 | 00001 | 000000 |001 |001 | 100 |000
LY 0 (00010 | 000000 |010 |010 | 100 |000
0 (00100 | 000000 |010 |010 {010 [000
0 (00110 | 000000 |OI1 |0O11 {010 [000
0(01010 | 000000 |100 |100 |110 [000
0(01111 | 000000 |101 |101 {110 [000
0(01010 | 000000 |101 |101 {010 [000
DIVIDE |1 00000 | 1001UU |011 |011 |UU |011
00000 | 11110UU |o011 |OI11 : 101

Uu

00000 | 0O11UU | 011 |OI1 |4 001

uu

SQUAR | 000001 | 000000 |001 |001 |100 |000
00100 | 000000 | 010 |010 | 010 |000
00000 | 000000 | 000 | 000 | 000 |000

SQUAR | 100000 | 100100 001 |010 |[UU |110

ROOT

Finally the square operation shown in figure (8) and described in the third
row in the table(1) in which B,=X=0, and B;B;=P;P, , the result will be
stored 1n S6S5S4S382.

Active-HDL [total] - C:AMyDesignsitotal\waveform Editor 1.awf = - |ﬁ'|1|
File Edit Seach Miew Design Simolatinn Waveform Tonls Help ow ox
(B-CH | =[O H & > S r m e in [« =(=s 7One+0 |

[tBRohQHh QAR WA |01 Mot 653 KA
[y total fotal) =1 | Name | lsi | w20 s s e R s |
E-LE Roul . ol El & pt 2 @2 JE 2| =

-k C1 - stags? o pii2) 0

BHF C2: stageZ o pil) 1 -1

EHE C3: staged

=) il <=0

bk T4 Keel

St | SR % T I (I (I € M o ¢

-k C6: Keel © slff] 1]

& e 73 o sty 1 |
D lne_s0 @ i) 0 '
i@ line__81
- line_82 © 3 1 I | [[[
= line_83 © 2] o | | |
I st standard o 1) i
& ieee.std_logic_11E © st(0) i
i I I _’I © ck]
J B on 1]
o oenZd 0
Mame
& 2 waveform &
= KEFNEL: Simwulation has finished. There are no more test vectors to ;I
simulate.
TR TS 1= (i 4
EEl = B Console g Find & Compilation ; ® Simulation [
Ready]

Figure 5. The Multiply operation

Active-HDL [total) - C:\My Designsitotal\wavelorm Editor 1.awf = =

Filr Edit Szarch Miew Design Simolation Wavefrm Tonls HAR ow ox

a-sd]| FEOWO M D] &8 r mp e H W [=l==] smwo |

5

1
0l

o

|4 B oo |[h QL | & Q Q& | *w UM el | | s
tatal [tatal - i ' o C C ' ' '
| total (total =] | [Hame |ivalue |sti.. | 5. W BB B H o 0
=0k Foat : total == ™ o 0? 5] 137 107 =
#-4F L1 stagel |: 0
[}g C2: stage2 o atid) 0 =0 1 |
F4F C3: staged
= a3 1 =1
wak C4: Keel 2 ¢
sk C5: Keel = 2] 1 =1
ek CE: Kool o atf1) T
& line__73 o at{) 1 S
_g e o bt 3 3
=& line
s e nn d] S 3 4
> 0 —
—I et v |pu|l Lot shd_ogic_seclu[2 dusnlu Dm:
Marne alue o oohf1) q =1
oochU) 1 <=1
o opt G (?
®oa 1 <=1
Bk 4 i3)& A
< ck(2) 1
< k(1) u

Active-HDL [total] - C:\MyDesignshtotal\w aveform Editor 1.awf =

Filr Edit Search View

Dezion

Sirnnlatinn Wavefnrm Tonls

=18l

Heln o x

|88 s 0 [@ooWo W @

S EH e orp s (=== ed |

[iBE e yQi g @aae W mel =] 6% %%

[@totalotal Name [value s | « w.oooa T O I O T n: |
= Ao ol 2o o [CRD (I 4l
-k I : stagel o phlz) u <=1
F-4F C2: stage2 - 0 =10
[}g C3: staged =) il w=0 |p0rt [pt: in std_logic_vector[2 downto 0]
BF-3F C4: Keell
FHEE R Keel S ao 0
sk CE: Keel o zt[E] u}
[~ Ir e -0
© line_79 st u
‘g :!”9—310 < sl 0
i line_!
- D line_52 2. v
LD line 83 © 2] 0 [
R st standard o st1)] 1]
L@ isee.ztd_lagic_11E) 0
© ck] a
I [E— |
J B on 1] <=0
-
e " e o ® :
4 AED
waveform 2.
= KEEFNEL: SJimmulation has finished. There are no wose test vecotors to ;I
simulate.
g 3
-
B Consols /Ly Find /& Compilation ; ® Simulation [

Figure 7. The Square operation

Active-HDL [total) - C:\My Designshtotal\W aveform Editor 1.awf = = |ﬁ'|1|

Filr Edit Search Miew Design Sirolation Wavefarm Tonls Help ow ox
BEOMO S @ >SS »re i M=z 00 |
Mame |Value |Sti...| [ImS 20 4 25 0 30 4 3| NS
|atotal] 2 o ata) 1 =1] =]
Lk Aol il - =t a <=0
Ik C1: staged o atf3] 0 <=0
F4F C2: stage2 o atf2) 1 =1
EHE C3: staged o al) o oD
pee e
ek C6: Keel B b 1 i
& line_79 o bi[2] 0 <
-1 line_80 o bif] 0 el
(D =2 3 | 1 -1
Tl = : E— -
Mame Wallie o cif2) 1] <=0
o o) 1 =1 T
o) 0 I
o ow 1 <=1
Be o) —
o ckl2] 0 I
ocl1] 1 o=
o ckld) 1 =1 | =
ll | 1 — s flsf™
& Files #Structure g Resou... / ||LE] total.vhd %% stagel... %% stage2... %% staged... %% ac,ell.\rhd%% kcellvhd Egigg{:“%:lv\ra\refo'

1 signalls) selected B

hstant| | [@ 51 B ||[@ Active-HDL (total) - C... F]uriiled - Pairt | B 1029,

Figure 8. The Square root operation

The multifunction arithmetic pipeline was implemented on an FPGA of
type XC4003E that its parameters are shown in table (2).

Table (2) XC4003E Parameters

No. of CLBs 100
Maximum logic gates 3000
IOBs 80

Flip-Flops 360

Bits per frame 126
Frames 428

Program data 53,936

PROM Size (bits) 53,984

Table (3) Consumed resources in the XC4003E FPGA to

implement the multifunction arithmetic pipeline.

Resource type No. of consumed Consuming
resources percentage
CLB 24 out of 100 24%
4 inputs LUTs 38 out 0f 200 19%
3 inputs LUTs 15 out of 100 15%
IOB driving 0 out of 8 0%
Global buffers
Bonded IOB 16 out of 80 20%
IOB flops 0 R —
IOB latches 0 ----
Clock IOB pads 0 out of 8 0%
Primary Clks 0 out of 4 0%

After implementing the arithmetic pipeline design on the FPGA, the
ISE(Integrated software Environment) s/w generates information about
the design in the form of report that shown in table (3). This table reveal
the resources of FPGA that have been exhausted to implement the

design.

Conclusions
In this paper we proposed architecture for the MAC units as processor

core using reconfigurable FPGAs. Our design grew from an initial desire

to build a small, fast, and inexpensive sequence analysis machine into a
general purpose parallel processor.

In addition it will enable many applications previously not possible due to
the inflexible nature of ASIC implementations and the
cost/performance/power inefficiency of previous programmable
approaches. Simulation results show that our design is highly applicable
and can be used by the developers.

References

1.Jennifer Eyre and Jeff Bier, “The Evolution of DSP Processors”,
Berkeley Design Technology,Inc.(BDTI white paper).
http://citeseer.ist.psu.edu/eyre00evolution.html.

2. D.R.Martinez, T.J.Moeller, and K. Teitelbaum. Application of
Reconfigurable Computing to a high performance Front-end Radar
Signal Processor. Journal of VLSI Signal Processing, vol. 28, no. 1-2,
pp. 63-83, May 2001.

3. S. Yalamanchili, “Introductory VHDL from Simulation to Synthesis”,
Prentice-Hall, Inc, 2001.

4. Xilinx Development System “VHDL Reference Guide”, Xilinx, Inc,

1999.

http://toolbox.xilinx.com/docsan/data/alliance/dev/dev.htm

5. S. Brown and Z. Vranecis “Fundamentals of Digital Logic with
VHDL Design” McGraw-Hill, Inc, 2000.

6. J. Bahsker “VHDL Primer”, Prentice-Hall, Inc, 1999.

7. P. K. Chan “Digital Design Using FPGAs”, Prentice-Hall, Inc, 1994.

8. J. R. Armstrong “VHDL Design Representation and Synthesis”,
Prentice-Hill, Inc, 2000.

9. C.T. huang, P.C. Tseng, and L.G. Chen, “Flipping structure: An
Efficient VLSI Architecture for Lifting-based Discrete Wavelet
Transform”, IEEE Transactions on Signal Processing, Vol. 54. No. 4,
pp. 1080-1089, April 2004.

10. Tinku Acharya and Ping-Sing Tsai, “JPEG2000 Standard for Image
Compression; Concepts, Algorithms, and VLSI Architecture”, John
Wiley and Sons, Inc., 2005.

The work was carried out at the college of Engg. University of Mosul

