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Abstract

A solution method is developed to obtain three-dimensional
velocity and pressure distribution within a centrifugal pump impeller.
The method is based on solving fully elliptic partial differential
equations for the conservation of mass and momentum by finite
difference method to convert them into algebraic equations. The effect
of turbulence introduced using a certain algebraic model based on
modified Prandtl’s mixing length theorem. The conical coordinate
system is used in order to fit an arbitrary hub-to-shroud shape. The set
of algebraic equations is solved simultaneously by “SIMPLE”
algorithm to obtain velocity and pressure distribution within the
impeller passage. The results are compared with previous experimental
results of other researcher under the same operating circumstances and

acceptable agreement has been found.
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ag, aw, as, ay, ag, ar . Coefficients for neighboring grid points.  [kg.m’
3 -1
S7]

b,b;: source term .

'+ Factor accounts for effects of curvature and
rotation on turbulent viscosity Equation (5).

[ : Mixing length. [m]

n: Distance measured towards nearest wall. [m]

P: Pressure. [N.m?]

P, Static pressure at the center of the inlet section. [N.m’
]

P.S: Pressure side.

r: Radius coordinate in the conical coordinate system [m]

r,. Radius of the passage exit. [m]

R : Distance of a coordinate point ( ¢, r, ¢) from the axis of rotation.
[m]

S.S: Suction side.
U,: Peripheral speed at the passage exit.

[ms7]



u . Velocity component in the ¢- direction.

]

v . Velocity component in the » - direction.

]

w : Velocity component in the - direction.

]

z . Distance along impeller passage from inlet.

@ : General form of the dependent variable.

0,4 . Angular coordinate in conical coordinate system.

e - The effective viscosity.
1'3-1]
w7 - The laminar viscosity.
1.1
S7]
At The turbulent viscosity.
l.S-l]
p . Density.
w : Coefficient of pressure head (p-po)/ ( £ U>/2).

Q: Angular velocity of the impeller.
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1. Introduction
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A focal point of research in turbomachinery flow problems has been
the development of suitable solution methods to the flow field inside
these machines. In the past few years extensive progress has been made
in the application of different solution techniques. Nevertheless, general
flow solutions within turbomachine passages presently remain mostly

beyond the scope of prevailing methods.



Murakami et al., [1] reported an experimentally three-dimensional
velocity and pressure distributions in the impeller passage of centrifugal
pump. Zhang and Assains [2] presented a segregated approach for the
prediction of three-dimensional, compressible, subsonic flows. The
method uses a collocated finite volume scheme in body-fitted coordinates
to solve Navier-Stokes equations with state equations. The ability of the
method to perform satisfactorily near the low Mach number limit is
demonstrated through comparisons with incompressible flow
measurements. Politits and Giannakoglou [3] solved the steady state
Navier-Stokes equations in transonic flows using an elliptic formulation.
A staggered solution algorithm was established. The momentum
equations were solved in terms of the permitive variables, while the
pressure correction was used to update both the convection mass flux
components and the pressure itself. Turbulence was resolved through the
(k-&) model. Dealing with turbomachinery applications, results were
presented in two-dimensional compressor and turbine cascades under
design and off design conditions. The predicted results were in very good
agreement with the measurements. Wang and Komori [4] extended a
pressure based finite volume method (was originally developed to predict
incompressible flow) to predict the unsteady three-dimensional
compressible flow within a centrifugal impeller. The general curvilinear
coordinate system was used, and the collocated grid arrangement was
adopted. The standard (k-&) model was implemented to model the
turbulence effects. The procedure was successfully applied to predict
various compressible subsonic and supersonic flows. Hofmann and
Stoffel [5] presented a special test-pump with 2D curvature blade
geometry in cavitating and non-cavitating conditions using different
experimental techniques and a 3D numerical model of cavitating flows.
Experimental and numerical results concerning pump characteristics and
performance breakdown were compared at different flow conditions.
Appearing types of cavitation and the spatial distribution of flow within
the runner were also analyzed. Mununga at al., [6] presented numerical
simulations of the flow field generated by a six-bladed paddle impeller in
a closed unbaffled mixing vessel. Computations were performed using
the CFD software package FLUENT using grid generated from the pre-
processor software package Gambit. Auvinen [7] studied the issue by
performing a CFD analysis of a ingleblade sewage pump with FINFLO



Navier-Stokes solver. The results are compared to experimental
measurements provided by the pump manufacturer. In the analysis two
contrasting solution schemes were utilized (time-accurate and quasi-
steady methods ) and their validity was assessed.

In the present study a three-dimensional numerical study of steady,
turbulent and incompressible flow characteristics inside the passage
between two blades of centrifugal pump impeller is presented. A finite
volume method for solving Navier-Stokes equations in conical coordinate
system with staggered grid arrangement is also presented

2. The Governing Equations
In order to fit an arbitrary hub and shroud surfaces shapes, the
conical coordinate system of ¢, » and @coordinates would be used as

shown in Figure (1).

T ~ a. r-0 plane. b. ¢ — 0 plane.
Figure. (1): The used coordinate system.

The equations for conservation of mass and momentum for
incompressible, steady and turbulent flow in each of the ¢, »and @

directions are given below [8]:



(1)  Mass Conservation .
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The effective viscosity ( x .y) is taken to be the sum of the laminar
viscosity () and the turbulent viscosity () which is determined by

using the modified Prandtl’s mixing length turbulence model formula,
given below [8] :

w =l p1? 2 (5)

Where [ is mixing length, » is a distance measured in the direction
towards the nea- rest wall and f accounts for effects of curvature and
rotation. In this paper f will be specified so as to satisfy continuity
equation at the inlet and exit of the impeller passage. The value of f
can be evaluated within the range (0.1-10) [8].

. Finite Difference Formulation of the Equations

The basic of the numerical method is the conversion of the
differential equations (1, 2, 3 and 4) into algebraic equations relating
the value of the dependent variables at the considered grid point to the
its values at the neighboring grid points. This was done by finite
difference method.

After treating the governing equations by (FDM), the general
form of the resultant equation can be termed as [9] :

CZJCDJ :[Z

Where @ is the general form of the dependent variable [9].

a(DJ +b (6)
EW,S,N,B,F

This equation is known as a three-dimensional discretization
equation. Where  ( ag, aw, as, ay, ag and ar ) are the neighboring
coefficient representing the convection and diffusion terms of the mass
entering the cell at its boundary surfaces, which are equal to :
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Where the subscript ( j ) denotes the corresponding grid point.
The small letters subscript (e, w, s, n, b and /) denote the value of the
variable at the faces of the control volume. Figure (2) shows the
corresponding grid point and its neighbor grid points, while Figure (3)
illustrates the velocity components.

Table (1) illustrates the value of (») for Equation (6) and the value
of (b;) for Equation (7g) for the governing equations.
o N N

LAY
1gLre z?lca ree-adimensional contro 1gure elocCity components.
%J— ire lOI’l momenium equatlon

volume.




1 vy + vy, 1 wp twy
p R——cos 0; - —

J J

sin 6]-

PE ~Pj

_RLJ» Y +p[(vs+vn)QCOS ﬁj—(wb+wf)§25in Hj]

r— direction momentum equation

Table (1) Value of b and b, for Equations (6 and 7g) for governing
equations.

4. Method of Solution

The first step in the solution is dividing the flow field into grid
points, then the partial differential equations would be transformed into
an algebraic form by finite-difference method as illustrated in the
previous section. The discretized procedure of the equation is based on
the power law scheme [9] and the discretized equations are solved by
(TDMA) ( Try Diagonal Matrix Algorithm) with under-relaxation
factor 0.75 for pressure and 0.45 for velocity. The pressure and
velocity are linked by the SIMPLE algorithm [9].



5. Computer Program Descriptions
A computer program in FORTRAN-90 is written to solve a set of
the partial differential equations that govern the flow field. The field is
divided into (19*19*21) grid points, which are distributed in an
irregular, nearly orthogonal manner over the ¢, » and ¢ coordinates.

Figure (4) illustrates the grid point and control volume for the field.

6. Case Study
The impeller considered in this paper is the same of this used by
Murakami et al., [1] which is shown in Figure (5). The operating
conditions are as il

,,,,,
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a.r-6 plane. b. p-0
Figure. (4): Grid and control volumes system.
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a. Meridional profile. b. Mean blade shape.

Figure. (5): Meridional profile and mean blade shape for the impeller

Operating conditions Data




Rotational speed 400 rpm

Velocity at inlet 1 m/s
Inlet diameter 75  mm
Outlet diameter 169.5 mm
Number of blades 7

Density of fluid | 1000 kg/m®

Table (2) Operating conditions

7. Results and Discussions

The experimental results of the flow pattern through the impeller were
measured by Murakami et al., [1] at two locations (at radial section
r/r,=0.7 and 0.99). These results are used to check the validity of the
present method.

Figures (6 and 7) show the development of main relative velocity (w-
component) profiles on blade-to-blade surfaces. Values of non-
dimensional relative velocity to tip speed are plotted for three stations;
near the shroud, mid way and near the hub.
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Figure (6): Blade-to-blade relative velocity profiles at r/r,=0.7.



A comparison between the experimental and present numerical results
at »/r,=0.7 shows acceptable agreement as illustrated in Figure (6). The
relative velocity seems larger at the low-pressure side as a result of the
rotation and circulation.

At exit (r/r,=0.99), the comparison shows an acceptable agreement as
shown in Figure (7). The discrepancy between the experimental and
present numerical results is due to the effect of the volute casing on the
flow leaving the impeller, which appears in the experimental curves.

The vector field of the relative velocity for three hub-to-shroud
surfaces is presented in Figure (8). This figure shows how the flow
changes its direction from axial to redial and the relative velocity seems
small near the walls (hub and shroud).
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Figure (7): Blade-to-blade relative velocity profiles at r/r,=0.99 (Continued).



c. Near the hub.

b. Mid-way.

a. Near suction side.
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Figure (8)Vector field of the relative velocity on hub-to-shroud stream surfaces.



Figure (9) shows the vector field of the relative velocity for three
blade-to-hlade siirfaces This finiire shows how the flow changes its

directiol
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lcm:6m/s c. Near the hub.

The vector field of the secondary flow on the surfaces, which are
normal to the flow direction, is plotted in Figure (10). Due to the impeller
rotation, the secondary flow is directed towards the pressure side. The
secondary flow is very small, so the scale used to plot Figure (10) is
approximately twice as that used to plot Figures (8 and 9).

The equipressure lines (coefficient of pressure head (y)) were drawn
near the shroud surface for experimental method as shown in Figure (11),
while the present numerical ones are shown in Figure (12). The
comparison between the two figures shows acceptable agreement. The
equipressure lines are seen to be inclined in the circumferential direction.
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Figure (10) Vector field for the secondary flow.







Figure (12): Pressure contour on a blade-to-blade surface for the present prediction.

8. Conclusions and Recommendations

A numerical three-dimensional, through flow calculations to predict
velocity and pressure through a centrifugal pump were presented. The
predicted results were in good agreement with the experimental results.
For future work, the followings are suggested:

1. Reformulate the governing equations in a more usual coordinate
system of x, y and z to permit solution for any general surface of
revolution, by using grid generation method.

2. Develop the present turbulence model by using a two-equation
turbulence model (k- turbulence model), and modifying it to take into
account rotational and curvature effects.

3. The program could be extended and improved to predict the flow
characteristics for compressor or turbine.
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