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Abstract

In this paper, the Gaussian function is selected as a mother wavelet function and
utilized in the design of some corresponding filter banks. With a 1% derivation of the
Gaussian function, a similar shape to QRS complex part of the ECG is achieved.It can
be used for QRS feature extraction.Using thesymmetry property of the mother wavelet
function, the designed FIR wavelet filter banks can be realized in highly-efficient lattice
structures which are easy to implement. The resulting lattice structures reduces the
number of filter banks coefficients and this reduces, in turn the number of
multiplications and improves the filter banks efficiencies as it reduces the number of
computations performed. Hardwarely, this leads to less-complex implementations. The
resulting quantized multiplier values also lead to a multiplierless realization for such
wavelet filter banks.

Keywords: ECG,Wavelet and scaling functions, Filter banks, Lattice structures,
Multiplierless realization.
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I. Introduction

The electrocardiogram (ECG) is a time-varying signal that measures the electrical activity
of the heart. The cardiac cycle begins with the P wave, which corresponds to the period of
atrial depolarization in the heart. This is followed by the QRS complex, which is usually the
most relevant (recognizable) feature of an ECG waveform. The T wave follows the QRS
complex and corresponds to the period of ventricular repolarization(see Fig. 1)[1].
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Fig.1 A Sample ECG Signal showing P-QRS-T Wave

The ECG signal represents the potential differencebetween two points on the body
surface, versus time. Extracting the features from this signal has been found very helpful in
explaining and identifying various cardiac arrhythmias[2].One of the most important ECG
components is the QRS complex, which is associated with electrical ventricular
activation[3],[4].

The ECG feature extraction system provides fundamental features (amplitudes and
intervals) to be used in subsequent automatic analysis. In recent times, many techniques have
been proposed to detect these features [5],[6]. Most of the previously proposed techniques for
ECG signal analysis were based on time domain analysis. But this is not always adequate to
study all the features of ECG signals. Therefore, the frequency representation of a signal is
required. In recent years, many classifying methods which have been proposed including
digital signal analysis, Fuzzy Logic methods, Artificial Neural Networks,Hidden Markov
Model, Genetic Algorithm, Support vector Machines, Self-Organizing Map, Bayesian and
other hybrid methods. Each of these approaches exhibits its own advantages and
disadvantages [6].

The wavelet transform (WT) is one of several mathematical tools that is useful in the
analysis and design of systems and signals. Its representation basically involves the
decomposition of the signals in terms of small wave components called wavelets.Wavelet
theory is employed in many fields and applications such as signal and image processing,
communication systems, many other signal analysis and system control areas[7].The wavelet
transform is an efficient technique for a non-stationary signal processing. ECG signal is
one of the biosignals that is considered as a non-stationary one[8].There are many sets of
wavelet bases that can be used to represent a signal. Each basis in a certain wavelet set is
constructed form one function called the mother wavelet ¢(t). The multiresolutionanalysis of
signals using wavelets involves two basic operations on the mother wavelet. These operations
are the scale operation, and translation operation[7].
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The Gaussian function is perfectly local in both time and frequency domains and is
indefinitely derivable. Any n™ order derivative of Gaussian function may be considered as a
Wavelet Transform (WT). For cardiac signal characterization, a 1%order derivative Gaussian
wavelet function is of interest [9]. The proposed design is obtained by simulating the 1% order
derivative Gaussian system using a Gaussian system convolution stage with input signal x(n)
and differentiating the result. Due to linearity of system stages, the proposed digital-version
system can be reordered as shown in Fig. 2 with V as the 1% order backward difference

operator.
¥(n)—> ﬂ Gaussian J(n)

Convolution Stage

Fig.2A proposed system with Gaussian function and a derivative stage.

The resulting wavelet filter banks can be realized in highly-efficient lattice structures
which are easy to implement. The lattice structure reduces the number of coefficients and
this, in turn reduces the number of multiplications and improves both; filter bank complexity
and processing speed, as it reduces the number of computations performed [10]. Hardwarely,
lattice structure leads to less-complex implementations.

Besides this introductory section, Section Il of this paper contains the design of the
FIR wavelet filter utilizing the Gaussian function as a mother wavelet function. Section 111
illustrates the lattice structure of such filter with a standard deviation o = 1. A multiplierless
realization of such structure is also proposed in this section.The lattice structure of the
proposed filter with a standard deviation ¢ = 2 and its multiplierless realization are then
described in section 1VV.The extracted features from some ECG signals representing a group
of diseases in addition to the normal state are given in section V. Finally, Section VI
concludes this paper.

Il.  Wavelet Filter Design

One of the functions in the wavelet techniques is the Gaussian function (see Fig. 3)
that is defined by

(t-m)?
o(t) = ajﬁe_(7> ()

where ¢@(t) is the Gaussian function in term the time t. o is the standard deviation andm is the
center of the wave.

Fig. 3 The Gaussian function.
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In this paper, the Gaussian function is selected as a mother wavelet function. The 1%
order derivative Gaussian function shown in Fig. 4, has a similar shape to QRS complex part
of the ECG and can be used for QRS feature extraction. It is given by

.2

Ti]gne
Fig. 4 The 1% derivative Gaussian function.

In order to design a corresponding FIR wavelet filter, the values of such FIR filter
coefficients simulating the Gaussian response must be determined. To do so, the Gaussian
function must be truncated in a way that assumes getting coefficients number depends upon
standard deviation within the truncated function. To determine the values of these
coefficients, the value of the standard deviation ¢ must be determined. The Gaussian function
is approximately zero for |t| > 4c. For example, ¢'(t, o) < 0.0004 for |t| > 4 5. [11].

As shown in Fig. 3, since the response of designed FIR Gaussian wavelet filter stage
of Fig. 2 possesses thesymmetry property, then the required number of filter coefficients (i.
e., multipliers) is (1 + 40). Therefore, such FIR wavelet filter can be designed at various
values of standard deviation, . Next section shows the design of FIR wavelet filters ato = 1
and o = 2.

I11. Gaussian FIR Wavelet Filter withe =1
a) Lattice Structure

In the caseof o = 1, the resulting filter response shown in Fig. 5, corresponds to the
sampled version of the mother wavelet function in Fig. 3. It will have 9 coefficients with the
following system function:

HZz)=hy+hiz ' +hyz7 2+ hyz 3+ hyz* + hsz >+ hez ¢+ hyz77 + hgz™®  ...(3)

0.4

0.3

voltage

1 2 3 4 5 6 7 8 9
Time

Fig. 5 Impulse response of the Gaussian filter stage.
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By the property of quadrature mirror filters (QMFs), G(z) = H(—z), the system function G(z)
that corresponds to the scaling function can be written as
G(z)=hy—hiz7 '+ hyz72—h3z 3+ hyz* —hz®+hgz®—h,z77 + hgz™® ...(4)

The first design step is to find the polyphase matrix of the specified filter bank and a similar
matrix of the proposed lattice structure. The block diagram of lattice structure of the proposed
FIR wavelet filter is shown in Fig. 6, whereV? represents the down sampled version of the 1%
order backward difference operator.The filters' polyphase representations are expressed
asfunctions of z, by

Heven (Zz) = ho + hzZ_z + h4Z_4 + h6Z_6 + hBZ_B :|>
.. (5

HOdd(Zz) = h1 + h3Z_2 + h52_4 + h7Z_6

The down-sampled (by 2) form of equation (5) can be written as

Hepen (2) = ho + hZZ_l + h4Z_2 + h62_3 + hsz_4 :|> ... (6)

HOdd(Z) = hl + h3Z_1 + h5Z_2 + h7Z_3

Therefore,

H(z) = Heven(z) + Z_lHodd (2)

And .. (7)
G(2) = Hepen(2) — 27 Hyqa(2) }

with the following coefficients values:

ho = hg= 0.0021,h; = h; = 0.0208, h, = hg = 0.1074, h; = hs= 0.2874
andh, = 0.3989.

x(n) — Vz —

The Gaussian
. —=vo(n
function Heyengz) + yo(n)
The Gaussian
. — L n
function Hogq(z) yi(n)

Fig. 6 Block diagram of lattice structure of the proposed FIR wavelet filter.

The values of coefficients can be scaled (by a) to give a maximum frequency
response value equals to one, for the case of no-energy level variation during transformation.

This value of a for [ [H(e/®)| < 1] turns to be 0.81. Therefore, the new scaled coefficients
values are as follows:

ho=hg= 0.0017,h1 = h; = 0.0169, h, = hg = 0.0870, hs= hs=0.2328andh, = 0.3231.
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After getting these coefficients, the design of the proposed FIR wavelet filter is
accomplished. The magnitude and phase responses of H(ef“’) of the system function in

equation (7), are shown in Fig. 7. The final overall lattice structure in Matlab simulation is
shown in Fig. 8.

Magnitude (dB) and phase responses

Magnitude (dB)
Phase (radians)

tn
=

1
0 50 100 150 200 250 300 350 400 450

Frequency(mt/1000)

Fig. 7 The magnitude and phase responses of H(e/®) with (¢ = 1).
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Fig.8 The final lattice FIR wavelet filter bank structure with (o = 1).

b) A Multiplierless Realization

The rounded values of the resulting scaled coefficients for different wordlengths are
illustrated in Table 1.

Table 1 The rounded coefficient values for different wordlengths.

Wordlength Coefficients for different wordlengths

(bits)

Original 3 4 5 6 7 8 9 10

Coefficient
0.0017 0 0 0 0 0 0 0 9.7656e-4
0.0169 0 0 0 [0.0156|0.0156|0.0156 | 0.0156| 0.0166
0.0870 0 |0.0625|0.0625|0.0781| 0.0859| 0.0859| 0.0859| 0.0869
0.2328 0.1250| 0.1875|0.2188| 0.2188| 0.2266| 0.2305| 0.2324| 0.2324
0.3231 0.2500| 0.3125] 0.3125| 0.3125| 0.3203| 0.3203| 0.3223| 0.3223

The approximated values of Table 1 are used in a Matlab simulation for best selection of
maximum and average error values in the resulting filter magnitude response and the
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resulting SNR values.Calculations ofthe values of average error and deviation are carried out
by following equations:

Agpg= (1/m) * T A(e’?)
m = length of (Hy(e’®)) = no. of frequency samples ...(8)
A(ejw) = |Horiginal(ejw) - Hwordlength (ejw)l

Deviation =1 — max{Hwordlength (ejw)}

where:

Horiginai (€7%) is the original frequency response.

Hyoratengtn (efW) is the frequency response at a specified wordlength.
Deviation is the amount of error in the frequency response at any wordlength.

From equation (8), Table 2 is obtained. It will lead us to the corrected choice for
coefficients word lengths. It can be seen in Table 2 that, a wordlength of 6 bits can be chosen
for acceptable values of average error and deviation. Also, Table 3 returns the suitable
number of ECG samples for a maximum SNR valueof 37.0606dB.

Table 2 Maximum and average deviations.

Wordlengt 3 4 5 6 7 8 9 10
h (bits)
Aavg 0.1450 |0.0599 | 0.032 | 0.017 | 0.007 |0.0035 |0.0027 |0.0011
9 7 9
Hyordiengen| 0.5 | 0.812 | 0.875 | 0.937 | 0.976 |0.9843 | 0.990 | 0.9961
5 1 5 5 1
Deviation| 0.5 | 0.1875/0.1249| 0.0625| 0.0235]0.0157 | 0.0099| 0.0039

Table 3 SNR values with respect to no. of samples for the input ECGsignal.

SNR values in (dB) for different wordlengths (in bits)

3 4 5 6 7 8 9 10
Samples
20 18.7795 |28.7430|29.8735437.060% | 40.2516 |52.7677 | 53.2702 | 61.0592
40 18.7832(29.8413|31.8251|35.9911 |45.4214 |54.8581 | 51.5275 | 65.1076
60 16.6328 |26.9843|31.9761|34.817044.3359|51.0628 | 52.7310 | 60.4078
80 16.6352 | 26.6825|31.4614 [34.9883 |44.6972|50.7150 | 53.2873 | 61.8624

100 15.2283 |124.7151|29.9835|33.4573|42.764949.0411 | 54.5575 | 61.5493

120 15.2015|124.701829.3972|33.5001 [43.0360[48.3479 | 54.7324 | 61.1366

140 15.2296 |24.412729.2695 | 33.4544 |42.7619 [49.9888 | 54.5697 | 61.5065

160 15.6710 |24.614729.2656 | 33.8426|42.900347.8922 | 54.0714 | 61.3886

180 16.1534 |125.1310|29.4137|34.3439(43.4716|48.0435| 53.7406 | 61.2532

200 16.6931 |25.643429.7235|34.8739|43.955948.2593 | 53.5781 | 61.1686

From Table 3, the 6-bit representation tolerates a suitable number of ECG samples of 20
samples for the pre mentioned maximum SNR value. Since the FIR filter response is
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symmetric, therefore the number of multipliers can be reduced to almost half of its original
value(1 + 40). Thus, only5 multipliers can be used in the realization of such filter banks.
From Table 1 and for 6-bit representations, the exact number of required multipliers appears
to be reduced to 4. In addition, these 4 multipliers can be represented in sum-of-power-of-two
(SOPQT) resulting in a multiplier less realizations shown in Table 4.Hardwarely speaking, a
limited number of shifters and adders or subtracts are needed.

Table 4, Multiplier less representation of coefficients.

6-bit representation of SOPOTrepresentation of
coefficients coefficients
ho=0 None
h; = 0.0156 2°° = six shifts only

h,=0.0781 = 0.0625+0.0156 2%+ 2°5= shift and add
hs=0.2188 = 0. 2500 — 0.03125 | 2°—2 = shift and subtract
h, = 0.3125 = 0. 2500+0.0625 22 + 2 = shift and add

IV. Gaussian FIRWavelet Filter with o = 2
a) Lattice Structure

The same procedure of the previous section can also be followed. The filter response of
H(z) will have 17 coefficients with the following system function that corresponds to the
samples of Fig. 9 which represent a sampled version of the original mother wavelet function

with o = 2:

H(z)=hy+hz ' +hyz 2+ hyz 3+ hyz*+ hsz® + hez ¢+ h,z77 + hgz™8 +
hoz™® + hygz P + hy1z7 ' + hypz7 2 + hy3z B3 + hyyz7 ™ + 2715 +
hyez16 .9)

0.2

0.15

Voltage

0 2 4 6 8 10 12 14 16 18
Time

Fig. 9Impulse response of Gaussian function with (o = 2).

By the same property of quadrature mirror filters (QMFs), G(z) = H(—z), the system
function G(z) that corresponds to the scaling function can be written as

G(z)=hy—hz7 '+ hyz72—h3z 3+ hyz*—hsz >+ hgz®—h,z77 + hgz™8 —
th_g + thZ_lo - h.llZ_ll + hlzz_lz - h13Z_13 + h14Z_14 - h152_15 +
h162_16 (10)

The filters' polyphase representations can then be expressed by
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Heven (Zz) = ho + hzZ_z + h4Z_4 + h6Z_6 + th_B + hloz_lo + h12Z_12 + h14z_14
+ h16Z_16

HOdd (Zz) = h1 + h3Z_2 + h52_4 + h7Z_6 + th_B + h11Z_10 + h13Z_12 + h15Z_14
..(11)
The down-sampled form of equation (11) is written as

Heven (Z) = ho + hzZ_l + h4Z_2 + h6Z_3 + th_4 + h10Z_5 + h12Z_6 + h14Z_7 + h16z_8
HOdd (Z) = h1 + h3Z_1 + hSZ_Z + h7Z_3 + th_4 + h11Z_5 + h13Z_6 + h15Z_7

...(12)
Therefore,
H(z) = Heypen(2) + Z_lHodd (2) }
and .. (13)
G(z) = Heypen(2) — Z_lHodd (2)

with the following coefficients values:

h(): h16 = 00002, h1 = h15 = 00011, hg = h14 = 00044, h3 = h13 = 00142,
h4= h12 = 00367, h5 = h11 = 00770, h6: th = 01306, h7 = hg =0.1794
and hg = 0.1995.

Using the same previous scaling procedure, the value of a for
|H(e/)| < 1] turns to be 0.9201. Therefore, the new scaled coefficients values are:

ho = h1g = 0.0002, h; = hi5 = 0.0010, hy, = hy4 = 0.0041, hs = h;3=0.0130,
hs=h12, =0.0338, hs = hy; = 0.0708, he = h1o = 0.1202, h; = hg = 0.1651
and hg = 0.1835.

In this stage of design, the number of coefficients islimited to9 due to symmetry
property. The resulting magnitude and phase responses of H (ef“’) of the system function in
equation (13),are shown in Fig. 10. The final lattice structure in Matlab simulation is shown
in Fig. 11.

Magnitude (dB) and phase responses
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' | |
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Frequency(m/1000)

Fig. 10 The magnitude and phase responses of H (ef‘*’) with (¢ = 2).
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Fig. 11 The final lattice FIR wavelet filter bank structure with (c = 2).

b) A Multiplierless Realization

By the same previous procedure, awordlength of 6 bitscan also be chosen where the
maximum and average deviations are acceptable (maximum error is 0.0389& average
deviation is 0.0088) and the maximum SNR value is 46.2504dBat an ECG number of
samples of 20. Using 6-bit representations, the exact number of required multiplierscan
further be reduced to5. In addition, such multipliers can be represented in SOPOT, resulting
in a multiplierless realizationas shown in Table 5.

Table 5 Multiplierless representation of coefficients.

6-bit representation of SOPOT representation of
coefficients Coefficients
ho:h;L: h2: h3: 0 None
hs = 0.0313 27 = Five shifts (a shifter only)
hs= 0.0625 2% = Four shifts (a shifter only)
hs= 0.1094= 0.1250 - 0.0156 2°%- 2°° = shift and subtract
h; = 0.1563= 0.1250 + 0.0313 2 + 2” = shift and add
hs = hs+ hg = 0.1719 27 +2°* - 2°° = shift, add and subtract

V. ECG Feature Extraction

This section exhibits the data types of ECG signal which are adopted as input signals
to the designed systems. The data represents a group of diseases in addition to the normal
state.

The extracted feature from the ECG signal plays a vital role in diagnosing the cardiac
disease. Therefore, it is necessary that the feature extraction system performs accurately. The
purpose of feature extraction is to find as few properties as possible within ECG signal that
would allow successful abnormality detection and efficient prognosis. To get the feature
vector for any ECG signal, the concantination of the wavelet coefficients of the last scale
level and some scaling coefficients is usually obtained [6]. In this paper, the concantination of
the third or secondlevel wavelet and scaling coefficients is used to form the feature vector in
each tested ECG signal. These vectors (in hexadecimals) are illustrated in Tables 6 and 7 for
both standard deviation valuess = 1 and o = 2,respectively.
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Table 6 Wavelet and scaling coefficients (three-level) of tested ECG signals with ¢ =1.

Normal ECG | Waveletcoef. |0} 1 |FC|FD| 7 |FF|O 2 101]0
signal Scalingcoef. |[O|FF| 5 | 6 | 4] 0] 5|4 )]0]0
Bradycardia | Waveletcoef. |0 0 ] O | 1 | 2 |[FF] 2 |FC| O | O
ECG signal Scalingcoef. |0| O |[FD|FD| 1 | 0 |JFC|F7 | 2 | O
Tachycardia |Waveletcoef. |1| 1 ] 0 |FBJFC| 7| 6 | 1 |[FC|FF
ECG signal Scalingcoef. |O|FF|FF| 1 | 9 | F|]FA|F5|FD|FF
Hyperkalemia |Waveletcoef. |0 O | 0 | 3 | 3 |1 ] 1 |FE|FC]|O
ECG signal Scalingcoef. |0| O |[FE|FA|FC|FO |EF|F4A [FD| O
WPW syndrom | Wavelet coef. [O/FF] 0 | O | 1 | 4 |FF|JFE| 0 | O
ECGssignal | Scalingcoef. |0 2 | 4 | 5 |FF| 0 |FA|JFA] 2 | O
Pacemaker | Waveletcoef. |OJ O JFE| 1 | O |1 | 3 |FF| O | O
ECG signal | scalingcoef. |0| 0 |[FF| 7 | 8 |1 |FF|FF| 0 | O
Established | Waveletcoef. |O| O |[FC| 2 | 2 |1 |FD|FF| 3 | 1
angslinganEICG Scalingcoef. |[O|FF| 6 | C | 4 | 3 |FD| 3 |5 | 1

Table 7 Wavelet and scaling coefficients (two-level) of tested ECG signals with ¢ =2.

Wavelet =
Normal coef. 0|1 |3 |2 |FD|FA|FC|FE E ol313[3[2111010
ECG signal | Scaling oledee e 13 1o Teels o F A DO PR P B
Coef. E
Bradycardi Wavelet | ol celep|rclep|1 |4 |4 lafal2 |EIRIEl2]2 |1
Coef. Elale
a ECG Scaling =
signal coef 0|1 |1 |0 |FE|FF |0 |1 0j1]3]0 | |FAL L
Wavelet = =
Tachycardi | coef. 11142 |3 |2 |FCIFO|FDI6 |6 |- 1F9 513 ]5]2 |0
a ECG Scaling = FTE
signal coef. 0jo0 |0 |0 |2 |3 |1 |FB C 2 15]|2 clp 1(2]0
HyperkalemilVavelet FIF|F
ayEpCG cocf. |OIFF|FD|FDIFD|FF |1 |6 |73 |5|Alpl213]L |0
signal - |Sealing o1y |y fep frrfo |FE|FEf1 |33 1 |E[E]1]1 0
coef. DlE
WPW  [Wavelet FIE
syndrom | coef. o1 |1 j1 |2 |1 [FE/FBIOJ4 3 -|gIFA3|2 |1
ECG  |Scaling FIF F
signal | coef.. |00 [0 |0 |FF{o |3 Jo |glg]t]4jo|p|FAL L
Pacemaker [Wavelet | o | cel e ke |rr |4 |7 |5 |FRE|FR1 ]2 [1]0 |0 |o
ECG coef. C
signal | Scaling =
coef. 0|1 {1 |0 |FE|FD|FF |3 |30 E FEO 1|00 |0
Establishe |Wavelet | F|F FIF[FI|F
dangina | coef. FID FE14 16 L J0 14 3 I:FC C|D|E 011
ECG Scaling
signal coef. |L|1 [FE|FD|2 |3 |FF|FF]2 20 |FRO FRFRO |1
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V1. Conclusions
ECG-based FIR wavelet filter banks have been designed. The Gaussian function has been
utilized as a mother wavelet function stage withan advancing difference stage. Sampled
versions of such wavelet function are used as impulse responses to the designed wavelet filter
banks. These banks have been realized in a highly-efficient lattice structures which are easy
to implement. The numbers of filter banks coefficients have been reduced to more than half
of their original values. Resulting in reducing the number of multiplications and improving
the filter banks efficiencies as the final number of computationsperformed is reduced. This
may lead to less-complex hardware implementations. SOPOT method has been applied to
quantized different multiplier values, leading to multiplierless realizations for such multiplier
values (shift and add only).

In spite of the need for at least more than one level wavelet decompositions for ECG-
QRS feature extraction, the proposed lattice structures can also serve for that purpose because
of their less-complex and computational-efficient realizations.
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