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Abstract:

This study has investigated the modeling of shear strength using the artificial
neural network (ANN) approach. The Results of 128 samples of steel fiber reinforced
concrete (SFRC) beams without stirrups were collected gathered and used to generate a
four-layer feed forward neural network using the back-propagation learning algorithm
available in the MATLAB program. Nine parameters for SFRC beams, namely, beam
height, beam depth, beam width, steel cross-sectional area, shear span-to-depth ratio,
concrete compressive strength, volume fraction, fiber length, and fiber diameter, were
considered as input variables for the ANN. ANN output representing the shear strength
wer e compared with those observed experimentally using regression analysis approach.
Results indicated that the ANN modeling technique is effective in simulating the
behavior of SFRC beams. In addition, a parametric study shows that shear span,
compressive strength of concrete, volume fraction, and fiber length are playing the
major rolein the behavior of SFRC beams.
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1. INTRODUCTION

In modern time, has augmented the development of new materials and manufacturing methods
in the field of construction. One of the most important methods in this camp is the use of steel fibers
for various applications. Steel fibers have proved rather effectives’ crack controlling reinforcement,
particularly in slabs, due to its ability to distribute and prevent the appearance of cracks. By replacing
parts of the conventional reinforcement with steel fibers, it can be developed a new, more rational
production method. The innovation of more applications for steel fibers reinforced concrete (SFRC)
which lead to increased research efforts is due to the beneficial properties of steel fibers. Shear
reinforcement in concrete beams is an area where steel fibers may prove effective. It is incontestable
the utility of fiber reinforced concrete (FRC) in various civil engineering applications. For this reason,
FRC has been used successfully in slabs on grade, shot-concrete, architectural panels, precast
products, offshore structures, seismic region structures, thin and thick repairs, crash barriers, footings,
hydraulic structures, and many other applications.

Neural network is a computational mechanism that can obtain, represent and compute a
mapping from a multivariate space of information to another given a set of data representing that
mapping. The algorithm of back-propagation learning is widely used because of the simplicity of
methodol ogy.

Neural network is composed of interconnected nodes or simple neurons. These neuron
connections have weights that are adapted (trained) to improve the neural networks overal
performance. In back-propagation neural network, neurons are arranged in layers and are connected;
thus, in a layer neurons receive input from the previous level and send output to the following level.
External inputs are applied on the first layer and system outputs are taken from the last layer.
Intermediate layers are called hidden layers[1].

Back-propagation neural networks (BPNNSs) [2] are capable to learn from the examples of
training and find meaningful solutions without the need to specify the relationship between the
variables. They can capture complex and non-linear interactions between the variables in a system.
Therefore, BPNNSs are useful for finding solutions to the problems that lack understanding of physical
understanding or those whose behaviors are not well understood. The capability of neural networks to
find meaningful patternsin often-noisy datais an added advantage.

Neural network modeling technique has been applied successfully to many structural
engineering problems, such as. Shear strength of RC deep beams [3]. Thickness rectangular plates [4].
Parameter identification in elasto-plastic plates [5]. Strength prediction of a concrete mix [6].
Modeling of ultimate load for R.C. beams strengthened with CFRP [7]. Shear strength of reinforced
concrete corbels[8]. Modeling the capacity of CFRP-confined circular concrete columns[9] and linear
and nonlinear models updating of reinforced concrete T-beam bridges [10];

The current study deals with a neural network-based system as an identification technique to
predict the shear strength of a rectangular beam with steel fiber as shear reinforcement without
stirrups. A computer program was developed through the MATLAB program from Math Works [11].

2. Shear Strength of SFRC Beams

There are many factors affecting the ultimate shear strength of RC beams, such as: concrete
tensile strength or, indirectly, concrete compressive strength, shear span-to-effective depth ratio (a/d),
longitudinal reinforcement ratio (p), and effective depth (d). For SFRC beams, post-cracking tensile
strength of SFRC is other main factor. Many investigators used to test data assert considerable reserve
strength in FRC beams failing in shear after the occurrence of the first diagonal cracking. The variance
is assigned to a significant post-cracking tensile strength of the FRC compared with that of non-
reinforced concrete. The difference between the shear strength of RC beams with fiber and those
without fibers lies in the significant post-cracking tensile strength of the FRC. The prim factors that
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affect the shear strength of FRC beams are volume ratio, aspect ratio, shape of the steel fiber,
compressive strength of concrete, flexural reinforcement ratio, and shear span-to-depth ratio. The
existent shear strength models for FRC beams without web reinforcement are shorted in Table 1. The
ACI Committee 544 recommends Sharma’s model, but a code-based design equation for the shear
strength of FRC beams does not exist yet.

3. Performance of Neural Network Approach

Artificid neural networks (ANNS) are information-processing systems able to learn complex
cause-and-effect relationships between output and input data [12]. ANN may be describe as a
calculation sample based on
paralel distributed processing
with private properties such as
the ability to learn, generalize,
classify, and organize data. Fig. 1
shows a typical neural network
with the input, hidden layer, and  INnput
output parts.

Main neura network  Layer
architectures has two types: (1)
feed forward and (2) feed
backward. A back propagation
(BP) the first one, which is feed-

forward multilayer perception, is Hidden
used widely in engineering
applications. The most common Fig. (1) Typical Neural Network Model

BP network is the one that each

neuron has only one output and as many inputs as the neurons in the former layer. The network input
is connected to each neuron in the first hidden layer, while each network output is connected to each
neuron in the last hidden layer. Network weights are primarily set to random values, and during the
network-coaching phase, new values of the network parameters (weights) are computed. The neuron
outputs are calculated using

o) :F(thvviﬁb} (1)

Where O, isthe output of the neuron 1,lj is the input of the j neurons of the former layer, Wij are the

neuron weights, bi is the bias for modeling the threshold, and F is the activation function. The
activation function can be defined as the part of the neura network where all the computing is
completed. It maps the input domain (infinite) to an output domain (finite). The range to which most
activation functions map their output isin either theinterval [0, 1] or theinterval [-1, 1].

Many activation functions have been used over the years. However, the most common
activation functions belong five families to them [12]: (1) linear activation function. (2) step
activation function. (3) ramp activation function. (4) sigmoid activation function. and (5) Gaussian
activation function. The ANN error (E) for agiven training patterni is given by

E:%ii(dj ~T')? (2

Where O'; isthe output and Ti j isthe target.
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Table (1) Existing Shear Strength Modelsfor FRC Beams Without Web Reinforcement

No. Author Shear strength models, M Pa
Vi = (_Vfc wad fo'< 7OMPa
6
1 ACI1318-08[13]
1) fc’ Vud
Vn=| == +17p-= bwd - fc'<70MPa, Vd/M <1
Vi, = 0.18k(100p; fe JH 3byd = 0.035(k)3 2( ) hyd
2 Euro EC02[14]
fc <100MPa, k =1+ ,/@ <20, p| = A <o
d by d
Narayanan and Vn = €| 0.24fgpfc +80,oi +0.41F
3 , P a
Darwish[15] v/
e=1for a/ld> 2.8e = 2.8d/afor other case
2f 0.25 05
4 Sharma[ 16] Vi = spfe| d fepfc = 0.792(f¢s
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v, =(0.225£(100,)°°( ') ,d
5 Clad
adera[17] 200
E=1+ | —
0.9d

Database for Shear Strength of SFRC Beams

The publicdomain database used for this purpose was collected from previously published
papers [18-35]. A total of 128 data entries were adopted covering the SFRC without stirrups
and with shear failure only. The ranges of different factors affecting the shear strength of
SFRC beams are shown in Table 2.

Table (2) Range of Input Parametersin the Database

Input Parameter | Minimum | Maximum Input Parameter | Minimum | Maximum
h (mm) 100 375 f(MPa) 22.7 101.32
d (mm) 80 290 V(%) 0.22 2
b (mm) 50 152 L+(mm) 19 60
Aq(mnT) 71.2 1232 di(mm) 0.25 1.336
a/d 1.0 6.0 v (MPa) 0.56 13.95
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4. Neural Network Modelsfor SFRC Beams

The ANN model was constructed using nine main parameters for the input, namely,
concrete strength (fc’), height beam (h), beam width (b), effective depth (d), shear span-to-
depth ratio (a/d), longitudinal steel ratio (p), volume fraction (V;), fiber length (If), and fiber
diameter (df). The models have two hidden layers with 27 nodes, and the output layer hasone
node giving ultimate shear strength to the FRC beams. The sigmoid function was used as an
activation function, and the inputs and outputswere scaled in the range of 0.1 to 0.9. Network
training was performed using 111 sets of data from the literature. Network testing was done
using 17 data sets randomly selected from the ,
samg sources, which are given in Table (4). Table (3) Properties of the ANN Model
Convergence of the models in training was

based on minimizing the error of tolerance for Architecture 9-27-27-1
the root mean squared error during the training Training Function LM
cycles and monitoring the overal performance —— - - -
of the trained networks by comparing the Activation Function | tan sigmoid
outputs. The architecture of the developed Number of Epochs 144
ANN model and its properties are shown in Mean Squared Error 0.001
Table (3).

5. Results and Discussion

Table (4) represents the details of the test data used in the ANN model. The proposed
ANN model was compared with the experimental test data and the author’s equations.The
accuracy of this model’s experimental values of ultimate shear strength is shown in Fig. (2).
This model predicts both the training and testing sets quite accurately with coefficients of
correlation (R=0.99) and (0.93) for the training and testing data sets, respectively. Table (5)
represents the details of comparison between the experimental shear strength and calculated
shear strength from the ANN model and from the analytical equations (see Table 1), and the
ratio of calculated and experimental shear strength. Median values for the ratio of calculated
shear strength from the equations and that predicted from the ANN model for the
experimental shear strength are found to be 0.99. For Vn ANN/Vn Exp, 0.37 for Vn ACI/Vn
Exp, 0.52 for Vn EC/Vn Exp, 0.96 for Vn Nar/Vn Exp, 0.89 for Vn Sha/Vn Exp, and 0.55 for
Vn Cld/Vn Exp. Thus, based on Table (5), the ANN values are closer to the experimental
values than those of other methods.
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ANN predicted shear strength (MPa)

+ Data Points

—---v=T

Best Linear Fit

R=0.99

training data set

a. ANN Predicted

ANN predicted shear strength (MPa)

+ Data Points
Best Linear Fit
----Y=T

b. ANN Predicted
testing data set

% 5 10 is 5 4 5 6 7
(a) Experimental shear strength (M Pa) (b) Experimental shear strength (M Pa)
Fig.(2) Comparison of Experimental and Predicted Ultimate Shear L oads: (a)
ANN Predicted Training Data Set( b) ANN Predicted Testing Data Set.
Table (4) Details of Beams Used in the Testing Sets

NO h d b A52 a/d flc Vf |f df VnExp

" | (mm) | (mm) | (mm) | (mm®) (MPa) (%) | (mm) | (mm) | (MPa)

1 254 | 221 152 804 | 25| 36.16 1 30 05 2.458
2 300 280 100 560 | 25 53 075| 30 05 3.22
3 200 182 100 402 2 50 15| 30 05 4.23
4 200 182 100 402 | 35 48 075| 30 | 0564 | 202
5 150 135 75 158 [ 25| 314 075| 20 0.4 2.15
6 | 1524 | 127 | 1016 | 402 | 44| 3321 022 | 254 | 025 | 2461
7 | 1524 | 127 [ 1016 | 402 | 44 | 3321 022 | 254 | 0552 | 2.054
8 | 1524 | 127 | 1016 | 402 |34 | 3971 088 | 254 | 0552 | 2971
9 375 290 50 795 2 35 05| 30 05 458
10 | 150 130 85 226 3 49.4 025| 30 0.3 2.77
11 | 150 130 85 226 2 49.4 05 | 399 | 03 4.62
12 | 150 128 85 402 3 57.5 1 [ 399 | 03 4.37
13 | 150 126 85 608 2 53.6 15| 30 0.3 7.15
14 | 225 197 150 603 | 28| 299 075| 30 05 2.199
15 | 228 204 127 570 3 22.7 1 30 05 3.05
16 | 250 215 125 | 7605 | 4 95.4 05 | 60 0.8 2.27
17 | 250 212 125 402 2 68.6 0.75| 50 0.8 5.44
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Table (5) Comparison of Test Results

Bea VnE iV VnSh VnCI
m Viep | Voaw | Viac Viec | Vanar | Visna | Voca | Vam | Viac c n/N o a d
No. | (MPa) | (MPa) | (MPa) | (MPa) | (MPa) | (MPa) | (MPa) | Nigg | Ve | Ve Vi Nee | Ve
Xp Xp Xp
1 2458 | 3.310 | 1.002 | 1.463 | 2.961 | 2525 | 1429 | 1.35 041 | 060| 1.20 | 1.03 | 0.58
2 3.22 249 | 1213 | 1.572 | 3.010 | 3.057 | 1.331 | 0.77 038 | 049] 093 | 0.95]| 041
3 423 | 4177 | 1179 | 1.671 | 3.742 | 3.140 | 1.539 | 0.99 028 | 040 | 088 | 0.74 | 0.36
4 202 | 2411 | 1.155 | 1.648 | 2.366 | 2.674 | 1.527 | 1.19 057 1082| 117 | 1.32 | 0.76
5 215 | 2441 | 0934 | 1.317 | 2609 | 2353 | 1.279 | 114 043 | 061] 1.21 | 1.09 | 0.59
6 2461 | 2.141 | 0.960 | 1.458 | 2.088 | 2.101 | 1.859 | 0.87 039 |059]| 085 | 0.85| 0.76
7 2054 | 2132 | 0.960 | 1458 | 2.088 | 2.101 | 1.859 | 1.04 047 | 0.71] 102 | 1.02 | 0.90
8 2971 | 2938 | 1.050 | 1.547 | 2.517 | 2.450 | 1.926 | 0.99 035 | 052]| 085 | 0.82 | 0.65
9 458 | 3519 | 0986 | 1.358 | 5.364 | 2.627 | 2.012 | 0.77 022 1030| 117 | 057 | 044
10 277 | 2297 | 1171 | 1.664 | 2599 | 2.820 | 1.620 | 0.83 042 | 0.60| 094 | 1.02 | 0.58
11 | 462 | 5156 | 1.171 | 1.664 | 3.642 | 3.121 | 1.620 | 1.12 025 1036 | 079 | 0.68 | 0.35
12 437 | 4315 | 1.264 | 1.751 | 3.085 | 3.042 | 2.254 | 0.99 029 | 040 | 0.71 | 0.70 | 0.52
13 715 | 7188 | 1.220 | 1.710 | 5.734 | 3.251 | 2.767 | 1.01 017 | 024 | 080 | 0.45]| 0.39
14 | 2199 | 2484 | 0.911 | 1408 | 2535 | 2.232 | 1.308 | 1.13 041 | 064 | 115 | 1.01 | 0.59
15 305 | 2862 | 0.794 | 1.278 | 2.387 | 1.911 | 1.274 | 0.94 026 | 042 | 0.78 | 0.63 | 0.42
16 227 | 2195 | 1628 | 2.036 | 2.605 | 3.647 | 1.899 | 0.97 072 1090 | 115 | 161 | 0.84
17 544 | 4282 | 1.380 | 1.669 | 3.616 | 3.677 | 1.307 | 0.79 025 | 031 | 0.66 | 0.68 | 0.24
Median 0.99 0.37 | 052 | 0.96 | 0.89 | 0.55

6. Parametric Study

One of the advantages of neura network models is that parametric studies can be
easily conductedby ssmply varying one input parameter while all other input parameters are
set to constant values. Through parametric studies, the model’s performance may be verified
by simulating the physical behavior of the SFRC beams through the variation of certain
parameter values.

1- Effect of Shear Span-to-Depth Ratio (a/d)

Fig. (3) shows the effect of shear span-to-depth ratio (a/d) on the ultimate shear
strength of SFRC beams with compressive strength. Shear strength decreases with the
increase in shear span ratio. The effects become more evident with the increase in
compressive strength.

When the shear span-to-depth ratio increases from 2 to 5, the shear strength decreases
to 19.6% for 30 MPa compressive strength and decreases in rate (38.6%) for 90 MPa
compressive strength. Fig. (3) Indicates that the SFRC beams with a small shear span-to-
depth ratio appear to be more deeply affected by the compressive strength. No evident
difference between shear strength is shown in the beginning especially for the shear span ratio
(3, 4, and 5). However, when the compressive strength increases, the difference becomes
evident, especialy for 90 MPa. Compressive strength.
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Fig. (3) Effect of a/d and Compressive Strength on the Shear
Strength of FRC Beams without Stirrups.

2- Effect of Longitudinal Reinforcement (As)

The effect of the main reinforcement area (Ag) on the ultimate shear strength is
illustrated in Fig. (4). an amost nonlinear increase appears in the shear strength of SFRC
beams with the increase in main longitudina reinforcement. For a 30 MPa compressive
strength, the shear strengths are 2.36 and 2.96MPa when the A increases from 250mm? to
400mm?, respectively. For a compressive strength of 90MPa, the shear strength is 3.19 and
3.98MPa when the As increases from 250mm? to 400mm?, respectively.The influence of the
main longitudinal reinforcement on the shear strength of SFRC beams is small and the four
curves are parallel in most of its portions.
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Fig. (4) Effect of A;and Compressive Strength on the Shear
Strength of FRC Beams without Stirrups.

3- Effect of Beam Height

The effect of beam height on the ultimate shear isillustrated in Fig. (5). Regardless of
the other parameters, the figure shows that the nonlinear increase in ultimate shear strength of
SFRC beams increases with beam height. The shear strength increases to 25.8% and 41.9%
with anincrease in beam height from 200mm to 350mm, and in compressive strength from
30MPa to 90MPa, respectively. The figure also indicates a small difference in shear strength
between the beam heights of 200 and 250mm. The difference becomes more evident for beam
heights between 300 and 350mm.
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Fig. 5 Effect of Beam Height and Compressive Strength on the
Shear Strength of FRC Beams without Stirrups.

4- Effect of Volume Fraction (V)

Fig. (6). illustrates the relationship between ultimate shear strength and compressive strength
for different values of volume fraction ratio. The range of the volume fraction ratio was 0.5%
to 2.0%. When the other parameters are kept constant, as shown Fig. (6) the shear strength
increases with the increase in volume fraction ratio. For compressive strength of 30 MPa. the
difference between shear strength values is evident for different values of V;, but the increase
in compressive strength decreases the difference between shear strength values, especially for
a compressive strength of 90MPa and 1%, 1.5%, and 2% volume fraction ratio. Thus, the
shear strength increases to 51.2% and 26.3% when the volume fraction ratio increases from
0.5% to 2% for a compressive strength of 30 and 90 MPa, respectively.

166



Yousif: Artificial Neural Network Modelfor Shear Strengthof Fibrous RC Beams

4.5 T T ] 13 T T T
h = 250 mm, d=230mm, b=100mm, A=
4L 300 mm?a/d= 2, 1;=30mm, and di=0.5mm i
< V\V\l —
& 7 7 - YV
s 3.5 -
= o—
5 3L i
o
1%}
§ 25 |
o
o)
g
= 2 —e— vf=0.5% i
> —&— vi=1.0%
1.5k —6— Vf=1.5% -
—v— vf=2.0%
[ [ [ [ [ [ [

1
20 30 40 50 60 70 80 90 100
Compressive strength f’. (MPa)

Fig. (6) Effect of v; and Compressive Strength on the Shear
Strength of FRC Beams without Stirrups.

5- Effect of Fiber Length (If)

The effect of If on the shear strength of SFRC beams is shown in Fig.(7). The ultimate
shear strength of SFRC beams increased with the increase in If. This phenomenon is true for
all compressive strengths. For a compressive strength of 30MPa, the percentage increase in
ultimate shear strength is 28%when the If increases in If from 20mm to 50mm. For a
compressive strength of 90MPa, the ultimate shear strength increases to 49.1% when the If
increases from 20mm to 50mm.
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Fig. (7) Effect of I; and Compressive Strength on the Shear
Strength of FRC Beams without Stirrups.

Conclusions

In this study, the ANN model was developed to simulate the behavior of SFRC beams
without web reinforcement using a BPNN. The measured experimenta values were compared
with the shear strength calculated from the ANN model and that of the theoretical existing
formula. A parametric study was carried out to explain the effects of various parameters on
the behavior of SFRC beams without web reinforcement.The following conclusions were
drawn from this study:

e The ANN model is stronger and valid for ssimulating the behavior of SFRC beams without
web reinforcement. The ANN predictions are accurate, provided the input data are within
the ranges used for training the network.

e The ANN agorithm is an effective and inexpensive tool for carrying out a parametric study
among several parameters that affect the physica phenomenon in engineering, as
demonstrated inthe case of the ultimate shear strength of SFRC beams without web
reinforcement.

e Based on the parametric study, the shear span, compressive strength of concrete, volume
fraction, and fiber length are the major factors affecting the behavior of SFRC beams
without web reinforcement.
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Notations
a Shear span length, mm
b Beam width, mm

d Effective depth of beam, mm
o Diameter of fiber
fe Cylindrical concrete compressive strength, MPa
F Fiber factor
h Overal depth of corbel, mm
I¢ Fiber length
\ Volume fraction ratio (%)
A Shear strength, MPa
V.Exp  Experimental shear strength, MPa
V,ANN  Shear strength according to the ANN model, MPa
V,ACl  Shear strength according to the ACI318-08 model, MPa
V,EC  Shear strength according to the Euro code EC-2 model, MPa
V.Cld  Shear strength according to the Clade-04 model, MPa
V.Nar  Shear strength according to the Narayanan model, MPa
V,Sha  Shear strength according to the Sharma model, MPa
P Longitudinal reinforcement ratio, AJ/bd
a/d Shear span-to-effective depth ratio
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