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Comparison the Values of Stresses for the Mode | Stress
Intensity Factor for a Double Edge Cracked Tension
(Isotropic & Orthotropic) Plates
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Abstract

No one can deny the fact that cracked plates modeling is important to detect
structural damage. The strength calculation of different constructions is troubled by
various defects, which accelerate the formation of cracks as well as the process of
fracture. This research presents a comparison between the results obtained by FEA
techniques for isotropic and orthotropic plates,, general solutions for model-based
approach which represents the cracked plates that subjected to a tensile load for
determining the stresses,,. The finite element formulation is carried out in the using
analysis section of the "ANSYS 12" package to obtain the stresses and compare the
results.
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Nomenclature

Symbol Definition Unit

A Normalized crack length --
a Crack length in each side mm
h Specimen height mm

T Tensile load

I Specimen length m
Ex Modulus of elasticity in X axis N/m?
Ey Modulus of elasticity in Y axis N/m?
Ez Modulus of elasticity in Z axis N/m?

uxy Poisson’s ratio in XY plane -

nyz Poisson’s ratio in YZ plane -

uzx Poisson’s ratio in ZX plane -
Gxy Modulus of rigidity in XY plane N/m?
Gyz Modulus of rigidity in YZ plane N/m?
Gzx Modulus of rigidity in ZX plane N/m?
Kl Stress Intensity Factor N/m?
o, Radial stress component N/m?
Oy Hoop stress component N/m?
o0X Stress in X axis N/m?
oy Stress in Y axis N/m?
oXy Shear stress in XY plane N/m?
ovon Von Mises stress N/m?

1. Introduction

One of the most common incipient losses of structural integrity in mechanical
structures is the development and propagation of cracks. A crack may propagate from small
imperfections on the surface of the body or inside of the material and it is most likely to
appear in correspondence of high stress concentration. For example, Fig.1 shows a crack
developed in the stiffening plate of a generator casing. Fretting corrosion, in case of shrink
fitted connections, may generate cracks, the development of which is also apparently favored
by wet and corrosive environments. Thermal stresses and thermal shocks are also responsible
for generating high local stress intensity factors, which can cause the starting of a crack and
its propagation.[1].

Fatigue is a phenomenon of failure of material under cyclic or long term stress at stress levels
well below their ultimate stress and it is the result of the progressive growth of cracks through
the material [2]. Mechanical accidents, fatigue, erosion, corrosion, as well as environmental
attacks, are issues that can lead to a crack in a mechanical structure. Cracks are indications of
an impending mechanical failure.[3]. Massabo et al. [4]. derived approximate mode | weight
functions for orthotropic double cantilever beams with short and long cracks. The study of
Massab o et al. showed a strong dependence of the weight functions and the fracture behavior
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of delaminated beams and plates on the degree of anisotropy of the material, while in
composite laminates or layered systems can be very high. In this paper, approximate mode Il
weight functions was be derived for isotropic and orthotropic double cantilever beams with
short and long cracks. Since late 1950s the crack issue and the behavior of structural elements
contain one or more cracks have been considered by researchers seriously. The first attempts
for finding an analytical solution for stress and displacement fields near the crack tip were
performed by Irwin [5,6]. and Williams [7]. In these works an Airy stress function for an
infinite thin plate with a through crack has been suggested and a general governing equation
for stress state near the crack tip has been derived. Later, some researchers tried to find a
solution for this equation. Sedov [8]. presented a general solution for an internal crack in an
infinite plate using plane state stress assumption for symmetric (mode I) and antisymmetric
(Mode 2) cases. A large number of empirical and numerical formulations have been reported
for several continua with different forms of crack under various forms of loading. The most
important and useful forms of these formulae has been collected by Tada et al. [9]. Duffield
and Willens [10], presented an analytical and experimental investigation of parametric
instability for a stiffened rectangular plate. Therefore, the dynamic instability of the plate has
already created the way for direct engineering application. Liew and Kamel [11] have studied
the stress intensity factors for the cracks, emanating from circular hole in anisotropic media,
under arbitrary loading conditions. Numerically simulated to the growth of a blunted crack for
different crack geometries and also studied the effect of the crack tip radius and the ratio of
the specimen width to the crack length [12]. The effects of the specimen and crack geometries
were also considered elsewhere [13-15]. Loehnert and Belytschko [16], investigated the
amplification and shielding effect of micro crack on the macro crack.

2. Objectives Of This Research

In this work, the stress values of the mode I, stress intensity factor, for a double edge
cracked tension isotropic plate having normalized crack lengths of A = 2a/h = 0.1 to 0.3, are
calculated, Fig.(1). The results were compared with the values of the correction factor F(L)
calculated for the same plate but for orthotropic material using analysis section of the ANSYS
package. This problem is to be considered as plane stress because the state of stress in which
the normal stress o,, and the shear stresses oy, and oy, directed perpendicular to the x-y plane
are assumed to be zero.

3. Modeling Of a Rectangular Plate With Two Cracks

An elastic plate with a crack of length 2a in each side of its center subjected to a
uniform longitudinal tensile load (T) at one end and clamped at the other end as shown in
Fig.(1). Use a FEM analysis of the 2-D elastic center-cracked tension plate illustrated in Fig.
(2) and calculate the stress value of mode | (crack-opening mode) stress intensity factor for
the center-cracked plate.

4. Model Description

Specimen geometry: length | =500 mm, height h=100 mm. Material: mild steel having
Young’s modulus E =210 GPa and Poisson’s ratio p =0.3. A crack is crated perpendicular to
the loading direction at the center of the plate and has a length of 20 mm. The center-cracked
tension plate is assumed to be in the plane strain condition in the present analysis. Boundary
conditions of the elastic plate is subjected to a uniform tensile load in the longitudinal
direction at the right end, and clamped to a rigid wall at the left end.
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Fig.1 Modeling of a rectangular plate with two cracks.
Table (1): Material properties which used in the analysis.
Properties | lIsotropic Orthotropic
E, 225 MPa 0.216 MPa
N 0.13 Mpa
I 0.13 MPa
uxy """""""""" 0.3
llyz """""""" 03
l‘lZX """""""" 03
Gyy 37 KPa 37 KPa
Gyz """""""" 37 Kpa
GZX """""""" 37 KPa
!i:il'i_l AN

Fig. 2 The finite element model plate area
meshed by ordinary 8-node singular elements

5. Creation of an Analytical Model

Let us use a quarter model of the center-cracked tension plate as illustrated in Fig.(1),
since the plate is symmetrical about the horizontal and vertical center lines. Here we use the
singular element or the quarter point element which can interpolate the stress distribution in
the vicinity of the crack tip at which stress has a 1/Nr singularity where r is the distance from
the crack tip (r/a<<1). An ordinary isoparametric element which is familiar to “Quad 8node
82” has nodes at the corners and also at the midpoint on each side of the element. A singular
element, has a midpoint moved one-quarter side distance from the original midpoint position
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to the node which is placed at the crack tip position. This is the reason why the singular
element is often called the quarter point element. (Transition element) ANSYS software is
equipped with a 2-D triangular singular element, but neither with 2-D rectangular nor with 3-
D singular elements are presented. Around the node at the crack tip, a circular area is created
and is divided into a designated number of triangular singular elements. Each triangular
singular element has its vertex placed at the crack tip position and has a quarter points on the
two sides joining the vertex and the other two nodes. In order to create the singular elements,
the plate area must be created via key points set at the four corner points and at the crack tip
position on the left-end side of the quarter plate area.

6. Stress Intensity Factor

A major achievement of the theoretical foundation of LEFM was the introduction of
the stress intensity factor K (the demand) as a parameter for the intensity of stresses close to
the crack tip and related to the energy release rate (Bazant and Planas 1998). Ingliss (1913)
studied the unexpected failure of naval ships, and Griffith (1921) extended this work using
thermodynamic criteria. Using this work, Irwing (1957) developed the concept of the stress
intensity factor.
Stress intensity factors are a measure of the change in stress within the vicinity of the crack
tip. Therefore, it is important to know the crack direction and when the crack stops
propagating. The stress intensity factor is compared with the critical stress intensity factor
KIC (the capacity)to determine whether or not the crack will propagate. Dimensional analysis

can be used to show that the stress intensity factor for Mode | fracture K;, where K, = gcs\/E
and o=nominal far field stress ,2a = crack length and g is a non dimensional function
depending on the size and geometry of the crack, size and geometry of the structural
component, and the type of loading. For normal cracks, its value ranges between land 2, but it
may be larger for longer cracks.Functions defined

for common geometries and loading conditions ¥ Oy

are available in Barsom and Rolfe (1987) and I .

Tada (1973). If K, is the same for two cracked i
bodies, then based on the equations, the same I IL_
stress field will exist at their crack tips. If the two 5 Ox
bodies are made of the same material, an identical r “ am
response is expected. This fact leads to the IU_
important conclusion that K, can be used as a 0 ’

similitude parameter to compare the response of Crack ¥

the same material at the crack tip and also to
compare the degree at which the materials are
influenced by the stress fields.

Fig. 4 The crack tip stresses

7. Stress Intensity Factor and Crack Tip Stresses
Crack tips produce a 1’“a"r;singularity. The stress fields near a crack tip of an isotropic

linear elastic material can be expressed as a product of 1/~ and a function of & with a
scaling factor K:
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where the superscripts and subscripts I, 1l, and 111 denote the three different modes that

different loadings may be applied to a crack. The factor K is called the Stress Intensity Factor.
Mode I (Tension, Opening).

The stress distribution around a crack touching the interface can be found e.g. in [17].
Stress-free crack faces require the following boundary conditions:

O199 (1 70) = O3y (1,—70) = 04, (1, 1) = 0,y (r,—7) =0 (1a)

where the subscript 1, 3 indicates region 1 and 3, in Fig. 1. Continuity conditions at
the interface lead to the following eight equations for displacements and stress components:

Uy, (1 4) = U, (1, 9) Ug (N, @—7) =U, (r,¢—r)

Uy (I, @) = Uy (1, 9) Usy (@ —7) = Uy, (1, ¢ — 1)

O190 (1, $) = T04(T', 9) O00(F P —7) = 0y (I, ¢ — 7) (1b)
Ouro(F4) =0, (1,9) O (1 P—1) =0 (I, ¢—T)

The corresponding stress singularity exponents can be determined from Eigen values as:
p1=1-Al and P2 =1-A2 (@)

The general expression describing the stress field around the crack tip touching the interface
between two materials is given by the following equations (generally, two stress singularity
exponents p; and p; exist): [17].

H, P H,
%= o fl.,(plﬂaﬁ¢)+\/2—r F2i (P2, 0,0, 5, 9) @)

where H1 [Mpa.m®™ ] and H2 [Mpa.m" ] are generalized stress intensity factors, faij
(P10 ;0 ,p ,9 ) and 5 (p2,0 ,a ,p ,¢ ) are known functions, (r,0) are polar coordinates with
their beginning at the crack tip and p; and p; are stress singularity exponents. o, § are Dundurs
parameters [18] and represent elastic constants of a bimaterial body:

_H (ky +1) — g4 (1, +1) _ o (K —1) — 11y (x, —1)
o (16, +1) + 14 (1, +1) o (i, +1) + 14 (1, +1)

(4)

where the shear modulus p = En/ 2 (1+vy) (Em is Young’s modulus) and parameters

3-v .
Ky = 1 T for the case of plane stress or m k , = 3 — 4vy, for plane strain (m = 1, 2
-+-Vm

corresponds to the number of the material).
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Note that values H; and H, do not mark the appurtenance to the normal or the shear mode of
loading, but the values include both modes of loading. For a crack touching the interface the
general form of the stress components is given by Egs. (5).

3, (4 +1)sin(4, +1)0+b,V (4, +1)cos(4, +1)6 + ]

w_ v H 5
o Zl:\/ﬁr 'L“)(zi ~3)sin(4, -0 +d,” (4 —3)cos(4, 10 | )

() g 6) i

, a;, " sin(4, +1)@+Db,"” cos(4, +1)0 +

r= A (4 +1) 0 0 (5b)
¢, ’sin(4 —1)@+d;" " cos(4, -1)& |

2
- H
9)
o =—
v =2

a, " (4 +1)cos(4 +1)0 b (4 +1)sin(4 +1)0 +

__yH 5
oo Z“/Er 'L“)(/li ~1)cos(4 —1)0+d.? (4 —1)sin(4, —1)@ %)

The subscript i = 1, 2 means the number of singularity within the interval (0;1). _
The superscript j = 1, 2, 3 marks the number of regions. The constants &%, b ¢;’ and d;¥
represent the known eigenvector {x} , [17,18] .

8. Stress Intensity Factor in Practice

Engineers are interested in the maximum stress near the crack tip
and whether it exceeds the fracture toughness. Thus, the stress intensity
factor K is commonly expressed in terms of the applied stresses  at

#—0and # =0 For example, for a through crack in an infinite
plate under uniform tension , the stress intensity factor is

K, =o+vma where a is one half of the width of the through crack. l l l l l l l
The dimension of K is:

DIM[K] = gﬁ _ FL 2 — Stress../Length

In the last few decades, many closed-form solutions of the stress intensity factor K for
simple configurations were derived.

Fig. 5 Stress Intensity Factor K, [19]

9. Results and Discussion

Numerical results are presented for isotropic and orthotropic rectangular plates with a
many values of the correction factor for the mode | stress intensity factor for a double edge
cracked tension having normalized crack lengths of 2A=2a/h= 0.1 to 0.3. The material
properties of different used materials were shown in Table (1). Where; E, G and p represent
modulus of elasticity, modulus of rigidity and Poisson’s ratio respectively and fig. (3)
provides the boundary conditions. Stresses are obtained for uniformly tensile loads T = (5N)
for all cases. The stresses in all directions for full plate made of different materials are
discussed as following:

In figs. (6, 8,10,12) using isotropic plate the value of ey stress begin from (52.5) Pa at
(A=0.1) and reach to (92.7) Pa at (A= 0.3) but (under the same conditions) in the case of using
orthotropic will be (53.5) Pa at (A= 0.1) and reach to (89.6) Pa at (A= 0.3). In figs.
(14,16,18,20), using isotropic plate the value of oy stress begin from (24.8) Pa at (A=0.1 ) and
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reach to (47.8) Pa at (A= 0.3) but( under the same conditions) in the case of using orthotropic
will be (31.5) Pa at (A= 0.1) and reach to (34.5) Pa at (A= 0.3). In figs. (22,23,24,25) using
isotropic plate the value of Von Mises stress begins from (64.4) Pa at (A=0.1) and up to (81.8)
Pa at (A= 0.3) but (under the same conditions) in the case of the using orthotropic will be
(63.2) Pa at (A=0.1) and up to (79.5) Pa at (A= 0.3). In figs. (26,27,28,29) using isotropic plate
the value of oy, stress begins from (4.3) Pa at (A= 0.1) and up to (10.8) Pa at (A= 0.3) but
(under the same conditions) in the case of using orthotropic will be (2.9) Pa at (A= 0.1) and
reach to (7.8) Pa at (A= 0.3). Fig. (30) shows the following observations of these results, it can
be noticed that the variation of 6, with respect to( A ) is increased (in same path) from (52.5)
to (92.7) pa in the case of isotropic material and from (53.5) to (89.6) Pa for orthotropic
material with the increase of (A) from 0.1 to 0.3. Fig. (31) shows the following observations
from these results, it can be noticed that the variation of ey with respect to (A) is increased
from (24.8 ) and (19.2) Pa to (42.5) and (33.1) Pa for isotropic and orthotropic materials
respectively at (A =0.2) then it is increased to reach a max. value (47.8) Pa for isotropic but
remained approximately at (34.5) Pa for orthotropic material with increase of (A) from 0.2 to
0.3. Fig. (32) shows the following observations from these results, it can be noticed that the
variation of e6,,, With respect to (A) is at first about (47.8) Pa for isotropic and (48.3) Pa for
orthotropic, then it is increased to (46.9) and (55.6)Pa for isotropic and orthotropic
respectively at(A =0.2) and finally it is increase to reach a maximum values(81.8) Pa for
isotropic and(79.5) Pa for orthotropic with increase of (L) from 0.2 to 0.3. Fig. (33) shows the
following observations from these results, it can be noticed that the variation of oy, with
respect to (A) is increase (in same path) from (2.6) to (10.8) Pa in the case of isotropic
material and from (1.8) to (7.8) Pa for orthotropic material with increase of (1) from 0.1 to
0.3.

Not that figs. (7, 9, 11, 13, 15, 17, 19, 21) showing the enlarge view of figs. (6, 8, 10, 12, 14,
16, 18, 20) respectively.

— ] (—

.:'!-l::!‘ - [T EA 19 33 13,15 - MH.am - 44,472 ki
Fig. 6 Contour of the x-component () of stress at Fig. 7 Enlarged view of the longitudinal stress(o,)
(2=0.1) in the center-cracked tension plate (Isotropic). distribution around the crack tip(Isotropic).

21



Abdulla: Comparison The Values of Stresses For the Mode | Stress Intensity Factor ----

ML BASTIO AN Bt AT
b b oo i
= -l 1hLa o]
b ot
= o Tanmey
EaEs-t an
= ardes
B w78 AEX =, Ba0ERE
B 3L T a3t
- P ]
EERT] [ [T [T TETT T ) FTHCE 5,508 BEL 431
5,383 18,18 T 33,958 =4 343 15, %3 43,67 8,193 32,954

Fig. 8 Contour of the x-component (6x) of stress at
(2=0.3) in the center-cracked tension plate (lsotropic).

Fig. 9 Enlarged view of the longitudinal stress
(o) distribution around the crack tip(lsotropic).
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Fig. 10 Contour of the x-component (6x) of stress at

Fig. 11 Enlarged view of the longitudinal stress

(A=0.1) in the center-cracked tension plate(Orthotropic). (Gx)distribution around the crack tip(Orthotropic).
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Fig. 12 Contour of the x-component (6x) of stress at

(2=0.3) in the center-cracked tension plate(Orthotropic).
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Fig. 13 Enlarged view of the longitudinal stress
(ox)distribution around the crack tip(Orthotropic).

22



Al-Rafidain Engineering Vol.21 No. 4 August 2013
BODAL MOLITIDON M AL MESTIOE
= DEC 20 i1 TRt
E.: om FrETHT] :.:?':t .
oty Sorm
-11,438 o, -3, 858 . .47 $otis FEN T ] . 5.0 =11.42% 1878 =} 330 PrereT L) b 12,667 '] Fo LY

Fig.14 Contour of the y-component (6y) of stress at

Fig. 15 Enlarged view of the longitudinal stress

(A=0.1) in the center-cracked tension plate (Isotropic). (6,) distribution around the crack tip(Isotropic).

wtar szt AN
o - Boral s0UOTION
= LhrLdas s
o e =i
o] o .
8 =013.173 == e
R el m_23. 578
T
[ SN SSaa——— |
“3%.373 =, 24% 12,777 6. B30 43028 =ik 278 -1.04F i.Im A EEN E
-5 3. T4 ik p M H 47843 | = - 3.4 i%, % 3% Eid LM IH

Fig. 16 Contour of the y-component (6y) of stress at

Fig. 17 Enlarged view of the longitudinal stress

(2=0.3) in the center-cracked tension plate (Isotropic). (6,) distribution around the crack tip(Isotropic).
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Fig. 19 Enlarged view of the longitudinal stress (oy)

(2=0.1) in the center-cracked tension nlate(Orthotronic). distribution around the crack tip(Orthotropic).
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Fig. 20 Contour of the y-component (6y) of stress at Fig. 21 Enlarged view of the longitudinal stress
(2=0.3) in the center-cracked tension plate(Orthotropic).  (6y) distribution around the crack tip(Orthotropic).
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Fig. 22 Contour of the stress distribution (6yon) of stress  Fig. 23 Contour of the stress distribution (6yon) of stress
at (:=0.1) in the center-cracked tension plate(Isotropic). ~ at (A=0.3) in the center-cracked tension plate(Isotropic).

BOTAL 3DLATINE m BOCAL 3OLATION m
Lz EEC b DL L ot mC B B
18 LE1Y

F =1 T4z Bl il _ﬂ =]

i PR T 3. T [ER] 1.8 FENC T LN [N o
LM EH 11, 23% -5 3%, 53% LT §5-0%.F 1) et i ] 24,553 i, 334 3, 557

Fig. 24 Cpntour of the stress distripution (6von) of stress  Fig. 25 Contour of the stress distribution (Gyon) of stress
at (A=0.1) in the center-cracked tension plate(Orthotropic). at(A=0.3)in the center-cracked tension plate(Orthotropic).
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Fig. 26 Contour of the xy-plane (6xy) of stress at
(2=0.1) in the center-cracked tension plate(Isotropic).

Fig. 27 Contour of the xy-plane (Gxy) of stress at
(2=0.3) in the center-cracked tension plate(lsotropic).
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Fig. 28 Contour of the xy-plane (6xy) of stress at (A=0.1)

in the center-cracked tension plate(Orthotropic).

Fig.29 Contour of the xy-plane (6xy) of stress (A=0.3)

at in the center-cracked tension plate(Orthotropic).
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Fig. 30 Effect of correction factor F(X) on (o) in plates of an isotropic and orthotropic materials.
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Fig. 31 Effect of correction factor F(A) on (o) in plates of an isotropic and orthotropic materials.
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Fig. 32 Effect of correction factor F(A) on (6y0,) in plates of an isotropic and orthotropic materials.
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Fig. 33 Effect of correction factor F(L) on (o) in plates of an isotropic and orthotropic materials.

Table (2): Results of all cases with material properties which used in the analysis.

Stresses Isotropic Orthotropic
2=0.1 2=0.3 2=0.1 2=0.3
Oy 52.5 Pa 92.7 Pa 53.5Pa 89.6 Pa
o, 24.8 Pa 47.8 Pa 19.2 Pa 34.5 Pa
Guon 47.8 Pa 81.8 Pa 48.3 Pa 79.5 Pa
Gy 2.6 Pa 10.8 Pa 1.8 Pa 7.8 Pa
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10. Conclusions

Two models of cracks were prepared using finite element (ANSYS package) which

simulate in order to help us for understanding the stress concentration in any part of the
plates, and results were compared. However, we can conclude the following:

1-

The variation of the stresses (o) with respect to (A) was clearly observed in
orthotropic and isotropic plates and were approximately equal for the two plates. The
variation of the stresses (oy) with respect to (1) observed was found to be less in
orthotropic plate as compared to isotropic plates.

For isotropic plate the variation of the (eyon) with respect to (A) is approximately
remained constant from( A = 0.1 to 0.2 ). On the other hand only the variation of the
(ovon) With respect to (1) was observed large in orthotropic as compared to isotropic
plates especially when (1) was reached (0.2).

The maximum shear stress (ox,) with respect to (A) for the two materials which
occurred in the XY plane was varied significant. This variation was observed more in
orthotropic plates comparing to isotropic plates and the two curves were moving
approximately at the same path.

The variation of all stresses with respect to (A); doesn’t highly depended on the elastic
constants and not functional of the materials, this is because of the two dimensional
analysis 2- D that used for all materials, Hence the stresses SCF for (o) and (oy)
playing an important role in the design of plates.
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