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Abstract 
 No one can deny the fact that cracked plates modeling is important to detect 

structural damage. The strength calculation of different constructions is troubled by 

various defects, which accelerate the formation of cracks as well as the process of 

fracture. This research presents a comparison between the results obtained by FEA 

techniques for isotropic and orthotropic plates,, general solutions for model-based 

approach which represents the cracked plates that subjected to a tensile load for 

determining the stresses,,. The finite element formulation is carried out in the using 

analysis section of the "ANSYS 12" package to obtain the stresses and compare the 

results.  
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شق اتي وذ (غير موحدة الخواصو معدنيتين )موحدة تينالإجهادات في قطعقيم مقارنة 

 الشد قوة تحت تأثير للنمط الأول من معامل شدة الإجهادطرفيهما  يبكل
 

 أحمد محمود عبدالله
قسم الهندسة الميكانيكية / جامعة الموصل/   مدرس مساعد  

 

 الخلاصة
                                                               ت الشقوق ذو أهمية كبيرة فيي كشيا الريرر اليذد  حيدا فيي الهياكيل بعيد                                  مما لا شك فيه أن نمذجة الصفائح ذا 

                                        المختلفية  واجيه مشياكل فيي العييوب المختلفية                     المنظوميات الإنشيائية    في         المتانة                                     إكمال عملية التقر ب للنموذج. أن حساب 

                    محيدد فيي دراسية تو  ي                                لقيد تيم اسيتخدار طر قية العنصير ال              عمليية الكسير.     إلى         بالإضافة                             التي تكيا عملية تشكيل الشقوق 

               تحتيود كيل منهميا                                 لخواص والأخرى غيير موحيدة الخيواص(                )إحداهما موحدة ا ن                                   الاجهادات الحاصلة في قطعتين مستطيلتي

                          معرفية تيأثير نسيبة طيول الشيق                     الغير  مين هيذا البحي    ،                     تحيت تيأثير حميل شيد ثابيت     هميا                          على شق في جيانبين  مين جوانب

                   . تيم عير  المنحنييات               بسيبب هيذا الحميل        ي تحيدا                           على تركيز الاجهادات فيها التي                 لى الارتفاع الكلي  إ     قطعة    كل            الموجود في 

 "ANSYS 12".          برنامج     دار                                             الخاصة بتغير تمركز الاجهادات ومناقشتها  باستخ
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1. Introduction 

 
One of the most common incipient losses of structural integrity in mechanical 

structures is the development and propagation of cracks. A crack may propagate from  small 

imperfections on the surface of the body or inside of the material and it is most likely to 

appear in correspondence of high stress concentration. For example, Fig.1 shows a crack 

developed in the stiffening plate of a generator casing. Fretting corrosion, in case of shrink 

fitted connections, may generate cracks, the development of which is also apparently favored 

by wet and corrosive environments. Thermal stresses and thermal shocks are also responsible 

for generating high local stress intensity factors, which can cause the starting of a crack and 

its propagation.[1]. 
Fatigue is a phenomenon of failure of material under cyclic or long term stress at stress levels 

well below their ultimate stress and it is the result of the progressive growth of cracks through 

the material [2]. Mechanical accidents, fatigue, erosion, corrosion, as well as environmental 

attacks, are issues that can lead to a crack in a mechanical structure. Cracks are indications of 

an impending mechanical failure.[3]. Massab`o et al. [4]. derived approximate mode I weight 

functions for orthotropic double cantilever beams with short and long cracks. The study of 

Massab`o et al. showed a strong dependence of the weight functions and the fracture behavior 

Unit Definition Symbol 

-- Normalized crack length λ 

mm Crack length in  each side a 

mm Specimen height h 

 Tensile load T 

m Specimen length l 
2mN  Modulus of elasticity in X axis Ex 

2mN  Modulus of elasticity in Y axis Ey 

2mN  Modulus of elasticity in Z axis Ez 

-- Poisson’s ratio in XY plane μxy 

-- Poisson’s ratio  in YZ plane μyz 

-- Poisson’s ratio  in ZX plane μzx 

2mN  Modulus of rigidity in XY plane Gxy 

2mN  Modulus of rigidity in YZ plane Gyz 

2mN  Modulus of rigidity in ZX plane Gzx 

2mN  Stress Intensity Factor KI 

2mN  Radial stress component 
rr  

2mN  Hoop stress component 


 
2mN  Stress in X axis σx 

2mN  Stress in Y axis σy 
2mN  Shear stress in XY plane σxy 
2mN  Von Mises stress σvon 
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of delaminated beams and plates on the degree of anisotropy of the material, while in 

composite laminates or layered systems can be very high. In this paper, approximate mode II 

weight functions was be derived for isotropic and orthotropic double cantilever beams with 

short and long cracks. Since late 1950s the crack issue and the behavior of structural elements 

contain one or more cracks have been considered by researchers seriously. The first attempts 

for finding an analytical solution for stress and displacement fields near the crack tip were 

performed by Irwin [5,6]. and Williams [7]. In these works an Airy stress function for an 

infinite thin plate with a through crack has been suggested and a general governing equation 

for stress state near the crack tip has been derived. Later, some researchers tried to find a 

solution for this equation. Sedov [8]. presented a general solution for an internal crack in an 

infinite plate using plane state stress assumption for symmetric (mode I) and antisymmetric 

(Mode 2) cases. A large number of empirical and numerical formulations have been reported 

for several continua with different forms of crack under various forms of loading. The most 

important and useful forms of these formulae has been collected by Tada et al. [9]. Duffield 

and Willens [10], presented an analytical and experimental investigation of parametric 

instability for a stiffened rectangular plate. Therefore, the dynamic instability of the plate has 

already created the way for direct engineering application. Liew and Kamel [11] have studied 

the stress intensity factors for the cracks, emanating from circular hole in anisotropic media, 

under arbitrary loading conditions. Numerically simulated to the growth of a blunted crack for 

different crack geometries and also studied the effect of the crack tip radius and the ratio of 

the specimen width to the crack length [12]. The effects of the specimen and crack geometries 

were also considered elsewhere [13–15]. Loehnert and Belytschko [16], investigated the 

amplification and shielding effect of micro crack on the macro crack. 

 

2. Objectives Of This Research 
In this work, the stress values of the mode I, stress intensity factor, for a double edge 

cracked tension isotropic plate having normalized crack lengths of λ = 2a/h = 0.1 to 0.3, are 

calculated, Fig.(1). The results were compared with the values of the correction factor F(λ) 

calculated for the same plate but for orthotropic material using analysis section of the ANSYS 

package. This problem is to be considered as plane stress because the state of stress in which 

the normal stress σz, and the shear stresses σxz and σyz directed perpendicular to the x-y plane 

are assumed to be zero. 

 

3. Modeling Of a Rectangular Plate With Two Cracks 
An elastic plate with a crack of length 2a in each side of its center subjected to a 

uniform longitudinal tensile load (T) at one end and clamped at the other end as shown in 

Fig.(1). Use a FEM analysis of the 2-D elastic center-cracked tension plate illustrated in Fig. 

(2) and calculate the stress value of mode I (crack-opening mode) stress intensity factor for 

the center-cracked plate. 

 

4. Model Description 
Specimen geometry: length l =500 mm, height h=100 mm. Material: mild steel having 

Young’s modulus E =210 GPa and Poisson’s ratio μ =0.3. A crack is crated perpendicular to 

the loading direction at the center of the plate and has a length of 20 mm. The center-cracked 

tension plate is assumed to be in the plane strain condition in the present analysis. Boundary 

conditions of the elastic plate is subjected to a uniform tensile load in the longitudinal 

direction at the right end, and clamped to a rigid wall at the left end. 
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Properties Isotropic Orthotropic 

Ex 225 MPa 0.216 MPa 

Ey --------------- 0.13 Mpa 

Ez --------------- 0.13 MPa 

μxy --------------- 0.3 

μyz --------------- 0.3 

μzx --------------- 0.3 

Gxy 37 KPa 37 KPa 

Gyz --------------- 37 KPa 

Gzx --------------- 37 KPa 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. Creation of an Analytical Model  
Let us use a quarter model of the center-cracked tension plate as illustrated in Fig.(1), 

since the plate is symmetrical about the horizontal and vertical center lines. Here we use the 

singular element or the quarter point element which can interpolate the stress distribution in 

the vicinity of the crack tip at which stress has a 1/√r singularity where r is the distance from 

the crack tip (r/a<<1). An ordinary isoparametric element which is familiar to “Quad 8node 

82” has nodes at the corners and also at the midpoint on each side of the element. A singular 

element, has a midpoint moved one-quarter side distance from the original midpoint position 

Fig.1 Modeling of a rectangular plate with two cracks. 

 

250 250 

500 

T 

a 

a 

h
=

 1
0
0

 

Table (1): Material properties which used in the analysis. 

 

Fig. 2  The finite element model plate area 

meshed by ordinary 8-node singular elements 

 

Fig. 3 Enlarged view of the singular 

 elements around the crack tip. 
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to the node which is placed at the crack tip position. This is the reason why the singular 

element is often called the quarter point element. (Transition element) ANSYS software is 

equipped  with a 2-D triangular singular element, but neither with 2-D rectangular nor with 3-

D singular elements are presented. Around the node at the crack tip, a circular area is created 

and is divided into a designated number of triangular singular elements. Each triangular 

singular element has its vertex placed at the crack tip position and has a quarter points on the 

two sides joining the vertex and the other two nodes. In order to create the singular elements, 

the plate area must be created via key points set at the four corner points and at the crack tip 

position on the left-end side of the quarter plate area. 

 

6. Stress Intensity Factor  
A major achievement of the theoretical foundation of LEFM was the introduction of 

the stress intensity factor K (the demand) as a parameter for the intensity of stresses close to 

the crack tip and related to the energy release rate (Bazant and Planas 1998). Ingliss (1913) 

studied the unexpected failure of naval ships, and Griffith (1921) extended this work using 

thermodynamic criteria. Using this work, Irwing (1957) developed the concept of the stress 

intensity factor.  

Stress intensity factors are a measure of the change in stress within the vicinity of the crack 

tip. Therefore, it is important to know the crack direction and when the crack stops 

propagating. The stress intensity factor is compared with the critical stress intensity factor 

KIC (the capacity)to determine whether or not the crack will propagate. Dimensional analysis 

can be used to show that the stress intensity factor for Mode I fracture KI, where KI = gσ a  

and σ=nominal far field stress ,2a = crack length and g is a non dimensional function 

depending on the size and geometry of the crack, size and geometry of the structural 

component, and the type of loading. For normal cracks, its value ranges between 1and 2, but it 

may be larger for longer cracks.Functions defined 

for common geometries and loading conditions 

are available in Barsom and Rolfe (1987) and 

Tada (1973). If KI is the same for two cracked 

bodies, then based on the equations, the same 

stress field will exist at their crack tips. If the two 

bodies are made of the same material, an identical 

response is expected. This fact leads to the 

important conclusion that KI can be used as a 

similitude parameter to compare the response of 

the same material at the crack tip and also to 

compare the degree at which the materials are 

influenced by the stress fields. 

 

7. Stress Intensity Factor and Crack Tip Stresses 

Crack tips produce a singularity. The stress fields near a crack tip of an isotropic 

linear elastic material can be expressed as a product of and a function of with a 

scaling factor K: 

 

Fig. 4 The crack tip stresses 
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where the superscripts and subscripts I, II, and III denote the three different modes that 

different loadings may be applied to a crack. The factor K is called the Stress Intensity Factor. 

Mode I (Tension, Opening). 

The stress distribution around a crack touching the interface can be found e.g. in [17]. 

Stress-free crack faces require the following boundary conditions: 

 

0),(),(),(),( 3131    rrrr rr                                               (1a) 

 

where the subscript 1, 3 indicates region 1 and 3, in Fig. 1. Continuity conditions at 

the interface lead to the following eight equations for displacements and stress components: 

),(),( 21  ruru rr              ),(),( 23 rruru rr      

        ),(),( 21   ruru             ),(),( 23    ruru  

),(),( 21   rr         ),(),( 23    rr                                        (1b) 

),(),( 21   rr rr          ),(),( 23 rrrr rr     

 

The corresponding stress singularity exponents can be determined from Eigen values as: 

p1 = 1−λ1           and                p2 = 1−λ2                                                                  (2) 

 

The general expression describing the stress field around the crack tip touching the interface 

between two materials is given by the following equations (generally, two stress singularity 

exponents p1 and p2 exist): [17]. 

),,,,(
2

),,,,(.
2

22
2

11
1 21 





 pfr

H
pfr

H
ij

p

ij

p

ij


                                               (3) 

 

where H1 [Mpa.m
P1

 ] and H2 [Mpa.m
P2

 ] are generalized stress intensity factors, f1ij 

(p1,θ ,α ,β ,φ ) and f2ij (p2,θ ,α ,β ,φ ) are known functions, (r,θ) are polar coordinates with 

their beginning at the crack tip and p1 and p2 are stress singularity exponents. α, β are Dundurs 

parameters [18] and represent elastic constants of a bimaterial body: 

 

)1()1(

)1()1(

2112

2112











k
             

)1()1(

)1()1(

2112

2112











k
                                            (4) 

 

where the shear modulus μ = Em / 2 (1+υm) (Em is Young’s modulus) and parameters 

m

m
m

v

v






1

3
  for the case of plane stress or m κ m = 3 − 4υm for plane strain (m = 1, 2 

corresponds to the number of the material). 

http://www.efunda.com/formulae/solid_mechanics/fracture_mechanics/fm_lefm_modes.cfm
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Note that values H1 and H2 do not mark the appurtenance to the normal or the shear mode of 

loading, but the values include both modes of loading. For a crack touching the interface the 

general form of the stress components is given by Eqs. (5). 
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The subscript i = 1, 2 means the number of singularity within the interval (0;1). 

The superscript j = 1, 2, 3 marks the number of regions. The constants ai
(j)

, bi
(j), 

ci
(j) 

and di
(j) 

represent the known eigenvector {x} , [17,18] . 

 

8. Stress Intensity Factor in Practice 
Engineers are interested in the maximum stress near the crack tip  

and whether it exceeds the fracture toughness. Thus, the stress intensity 

 factor K is commonly expressed in terms of the applied stresses at 

 and . For example, for a through crack in an infinite 

 plate under uniform tension , the stress intensity factor is  

IK   where a is one half of the width of the through crack.  

The dimension of K is: 

2
3

2
][


 FLL

L

F
KDIM  LengthStress.               

        In the last few decades, many closed-form  solutions of the stress intensity factor K for 

simple configurations were derived. 

 

9. Results and Discussion  
 Numerical results are presented for isotropic and orthotropic rectangular plates with a 

many values of the correction factor for the mode I stress intensity factor for a double edge 

cracked tension having normalized crack  lengths of  λ=2a/h= 0.1 to 0.3. The material 

properties of different used materials were shown in Table (1). Where; E, G and μ represent 

modulus of elasticity, modulus of rigidity and Poisson’s ratio respectively and fig. (3) 

provides the boundary conditions. Stresses  are obtained for uniformly tensile loads T = (5N) 

for all cases. The stresses in all directions for full plate made of different materials  are 

discussed as following: 

In figs. (6, 8,10,12) using isotropic plate the value of σx stress begin from (52.5) Pa at 

(λ= 0.1) and reach to (92.7) Pa at (λ= 0.3) but (under the same conditions) in the case of using 

orthotropic will be (53.5) Pa at (λ= 0.1) and reach to (89.6) Pa at (λ= 0.3). In figs. 

(14,16,18,20), using isotropic plate the value of σy stress begin from (24.8) Pa at (λ=0.1 ) and 

Fig. 5 Stress Intensity Factor
IK [19] 
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reach to (47.8) Pa at (λ= 0.3) but( under the same conditions) in the case of  using orthotropic 

will be (31.5) Pa at (λ= 0.1) and reach to (34.5) Pa at (λ= 0.3). In figs. (22,23,24,25) using 

isotropic plate the value of Von Mises stress begins from (64.4) Pa at (λ=0.1) and up to (81.8) 

Pa at (λ= 0.3) but (under the same conditions) in the case of the using orthotropic will be 

(63.2) Pa at (λ= 0.1) and up to (79.5) Pa at (λ= 0.3). In figs. (26,27,28,29) using isotropic plate 

the value of σxy stress begins from (4.3) Pa at (λ= 0.1) and up to (10.8) Pa at (λ= 0.3) but 

(under the same conditions) in the case of  using orthotropic will be (2.9) Pa at (λ= 0.1) and 

reach to (7.8) Pa at (λ= 0.3). Fig. (30) shows the following observations of these results, it can 

be noticed that the variation of σx with respect to( λ ) is increased (in same path) from (52.5 ) 

to (92.7) pa in the case of isotropic material and from (53.5)  to (89.6) Pa for orthotropic 

material with the increase of (λ) from 0.1 to 0.3. Fig. (31) shows the following observations 

from these results, it can be noticed that the variation of σy with respect to (λ) is increased 

from (24.8 ) and (19.2) Pa to (42.5) and (33.1) Pa for isotropic and orthotropic materials 

respectively at (λ =0.2) then it is  increased to reach a max. value (47.8) Pa for isotropic but 

remained approximately at (34.5) Pa for orthotropic material with increase of (λ) from 0.2 to 

0.3. Fig. (32) shows the following observations from these results, it can be noticed that the 

variation of σvon with respect to (λ) is at first about (47.8) Pa  for isotropic and (48.3) Pa for 

orthotropic, then it is increased to (46.9) and (55.6)Pa for isotropic and orthotropic 

respectively at(λ =0.2) and finally it is increase to reach a maximum values(81.8) Pa for 

isotropic and(79.5) Pa for orthotropic with increase of (λ) from 0.2 to 0.3. Fig. (33) shows the 

following observations from these results, it can be noticed that the variation of σxy with 

respect to (λ) is increase (in same path) from (2.6) to (10.8) Pa in the case of isotropic 

material and from (1.8)  to (7.8) Pa for orthotropic material with increase of (λ) from 0.1 to 

0.3. 

Not that  figs. (7, 9, 11, 13, 15, 17, 19, 21) showing the enlarge view of figs. (6, 8, 10, 12, 14, 

16, 18, 20) respectively. 

 

 

 

 

Fig. 6 Contour of the x-component (σx) of stress at    

(λ=0.1) in the center-cracked tension plate (Isotropic). 
Fig. 7 Enlarged view of the longitudinal stress(σx) 

distribution around the crack tip(Isotropic). 
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Fig. 8 Contour of the x-component (σx) of stress at 

(λ=0.3) in the center-cracked tension plate (Isotropic). 

Fig. 9 Enlarged view of the longitudinal stress  

(σx) distribution around the crack tip(Isotropic). 

Fig. 10 Contour of the x-component (σx) of stress at 

(λ=0.1)  in the center-cracked tension plate(Orthotropic). 

Fig. 11 Enlarged view of the longitudinal stress 

(σx)distribution around the crack tip(Orthotropic).  

 

 

 

 

 

 

Fig. 12 Contour of the x-component (σx) of stress at 

(λ=0.3) in the center-cracked tension plate(Orthotropic). 

Fig. 13 Enlarged view of the longitudinal stress 

(σx)distribution around the crack tip(Orthotropic).  
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Fig. 18 Contour of the y-component (σy) of stress at 
(λ=0.1) in the center-cracked tension plate(Orthotropic). 

Fig. 19 Enlarged view of the longitudinal stress (σy) 

distribution around the crack tip(Orthotropic).  

Fig. 15 Enlarged view of the longitudinal stress    

(σy) distribution around the crack tip(Isotropic). 
Fig.14 Contour of the y-component (σy) of stress at 

(λ=0.1)  in the center-cracked tension plate (Isotropic). 

Fig. 16 Contour of the y-component (σy) of stress at   

(λ=0.3) in the center-cracked tension plate (Isotropic). 
Fig. 17 Enlarged view of the longitudinal stress  

(σy) distribution around the crack tip(Isotropic). 
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Fig. 20 Contour of the y-component (σy) of stress at 

(λ=0.3) in the center-cracked tension plate(Orthotropic). 

Fig. 21 Enlarged view of the longitudinal stress   

(σy) distribution around the crack tip(Orthotropic).  

Fig. 23 Contour of the stress distribution (σvon) of stress 

at (λ=0.3) in the center-cracked tension plate(Isotropic). 

Fig. 22 Contour of the stress distribution (σvon) of stress 

at (λ=0.1) in the center-cracked tension plate(Isotropic). 

Fig. 25 Contour of the stress distribution (σvon) of stress 

at(λ=0.3)in the center-cracked tension plate(Orthotropic). 

Fig. 24 Contour of the stress distribution (σvon) of stress 

at (λ=0.1) in the center-cracked tension plate(Orthotropic). 
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 Fig. 30 Effect of correction factor F(λ) on (σx) in plates of an isotropic and orthotropic materials. 
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Fig. 27 Contour of the xy-plane (σxy) of stress  at 

(λ=0.3) in the center-cracked tension plate(Isotropic). 
Fig. 26 Contour of the xy-plane (σxy) of stress at 

(λ=0.1) in the center-cracked tension plate(Isotropic). 

Fig.29 Contour of the xy-plane (σxy) of stress  (λ=0.3) 

at in the center-cracked tension plate(Orthotropic). 
Fig. 28 Contour of the xy-plane (σxy) of stress at (λ=0.1)   

in the center-cracked tension plate(Orthotropic). 
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Stresses Isotropic Orthotropic 

λ=0.1 λ=0.3 λ=0.1 λ=0.3 

σx 52.5 Pa 92.7 Pa 53.5 Pa 89.6 Pa 

σy 24.8 Pa 47.8 Pa 19.2 Pa 34.5 Pa 

σvon 47.8 Pa 81.8 Pa 48.3 Pa 79.5 Pa 

σxy 2.6 Pa 10.8 Pa 1.8 Pa 7.8 Pa 
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 Fig. 31 Effect of correction factor F(λ) on (σy) in plates of an isotropic and orthotropic materials. 

 Fig. 32 Effect of correction factor F(λ) on (σvon) in plates of an isotropic and orthotropic materials. 

 Fig. 33 Effect of correction factor F(λ) on (σxy) in plates of an isotropic and orthotropic materials. 

Table (2): Results of all cases with material properties which used in the analysis. 
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10. Conclusions 
Two models of cracks were prepared using finite element (ANSYS package) which 

simulate in order to help us for understanding the stress concentration in any part of the 

plates, and results were compared. However, we can conclude the following:  

 

1- The variation of the stresses (σx) with respect to (λ)  was clearly observed in 

orthotropic and isotropic plates and were approximately equal for the two plates. The 

variation of the stresses (σy) with respect to (λ) observed was found to be less in 

orthotropic plate as compared to isotropic plates.  

2- For isotropic plate the variation of the (σvon) with respect to (λ) is approximately 

remained constant from( λ = 0.1 to 0.2 ). On the other hand only the variation of the 

(σvon) with respect to (λ) was observed large in orthotropic as compared to isotropic 

plates especially when (λ) was  reached (0.2).  

3- The maximum shear stress (σxy)  with respect to (λ) for the two materials which 

occurred in the XY plane was varied significant. This variation was observed more in 

orthotropic plates comparing to isotropic plates and the two curves were moving 

approximately at the same path. 

4-  The variation of all stresses with respect to (λ); doesn’t highly depended on the elastic 

constants and not functional of the  materials, this is because of the two dimensional 

analysis 2- D that used for all materials, Hence the stresses SCF for (σx) and (σy) 

playing an important role in the design of plates.  
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