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Abstract:
Voltage stability is indeed a dynamic problem. Dynamic analysis is 

important for a better understanding of voltage instability process. In this work 
an analysis of voltage stability from bifurcation and voltage collapse point of 
view based on a center manifold voltage collapse model. A static and dynamic 
load models were used to explain voltage collapse. The basic equations of a 
simple power system and load used to demonstrate voltage collapse dynamics 
and bifurcation theory. These equations are also developed in a manner, which is 
suitable for the Matlab-Simulink application. As a result detection of voltage 
collapse before it reach the critical collapse point was obtained as original point.
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List of symbols: 
V = Amplitude terminal load voltage (p.u.).  

 =  Internal terminal load voltage angle in degree. 

Em = Amplitude of generator internal voltage (p.u.). 

m =  Internal generator voltage angle in degree. 

Eo = infinity bus or slack bus voltage (p.u.). 

C = compensated load capacitor in p.u. 

Yo = Amplitude of equivalent impedance for the transformer  

         and transmission line in p.u. 

Ym = Amplitude of equivalent impedance for the generator, transformer  

         and transmission line in p.u. 

M =Generator moment of inertia p.u. 

dm = damping coefficient 

Pm = Mechanical power. 

P&Q = Real and reactive power load demand respectively.  

Kpw, Kpv,Kqw,Kqv and Kqv2 = Constant parameters for the real and reactive load power.   

 = Speed and equal to .

1. Introduction:
The continuing interconnections of bulk power systems, brought about by 

economic and environmental pressures, have led to an increasingly complex 
system that must operate ever closer to limits of stability. This operating 
environment has contributed to the growing importance of the problems 
associated with the dynamic stability assessment of power systems. To a large 
extent, this is also due to the fact that most of the major power system 
breakdowns are caused by problems relating to the system dynamic responses. It 
is believed that new types of instability emerge as the system approaches the 
limits of stability. 

One type of system instability, which occurs when the system is heavily 
loaded, is voltage collapse. This event is characterized by a slow variation in the 
system operating point, due to increase in loads, in such a way that voltage 
magnitudes gradually decrease until a sharp, accelerated change occurs.  

Voltage collapse in electric power systems has recently received 
significant attention in the literature (see, e.g., [1] for a synopsis), this has been 
attributed to increases in demand which result in operation of an electric power 
system near its stability limits. A number of physical mechanisms have been 
identified as possibly leading to voltage collapse.  From a mathematical 
perspective, voltage collapse has been viewed as arising from a bifurcation of the 
power system governing equations as a parameter is varied through some critical 
value. In several papers  [9-15], voltage collapse is viewed as an instability 
which coincides with the disappearance of the steady state operating point as a 
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system parameter, such as a reactive power demand is quasistatically varied.  In 
the language of bifurcation theory, these papers link voltage collapse to a fold or 
saddle node bifurcation of the nominal equilibrium point. 

Dobson and Chiang [2] presented a mechanism for voltage collapse, which 
postulates that this phenomenon occurs at a saddle node bifurcation of 
equilibrium points.  They employed the Center Manifold Theorem to understand 
the ensuing dynamics, In the same paper., they introduced a simplex example 
power system containing a generator, an infinite bus and a nonlinear load (as 
shown in Fig.(1)). The saddle node bifurcation mechanism for voltage collapse 
postulated in Ref.[2] was investigated for this example in [3] and in [4]. 

All essential distinction exists between the mathematical formulation of 
voltage collapse problems and transient stability problems.  In studying transient 
stability [5,6], one often interested in whether or not a given power system can 
maintain synchronism (stability) after being subjected to a physical disturbance 
of moderate or large proportions.  The faulted power system in such a case has 
been perturbed in a severe way from steady-state, and one studies the possibility 
of the post-fault system returning to steady-state (regaining synchronism). In the 
voltage collapse scenario, however, the disturbance may be viewed as a slow 
change in a system parameter, such as a power demand. Thus, the disturbance 
does not necessarily perturb the system away from steady-state. The steady-state 
varies continuously with the changing system parameter until it disappears at a 
saddle node bifurcation point. It is therefore not surprising that saddle node 
bifurcation is being studied as a possible route to voltage collapse [7]. 

In this paper a suitable model is set up to analyze the power system in [2]. 
This model is then used with the some cases such as change in load and in the 
reactive load power as well as using constant and dynamic load, as induction 
motor.  

The basic equations of the power system and load are also developed in a 
manner, which is suitable for the Matlab-Simulink application [8] and not 
depended on ready programs (compact program package) such as Auto [16]. The 
computer results show that voltage collapse may be studied before bifurcation 
with a static model and after bifurcation with a dynamic model so the goal of this 
work is to show the richness of the qualitative behaviors, which may occur near 
voltage collapse, and to illustrate their effect on system trajectories. 

2. Saddle-Node Bifurcations &Voltage Collapse 
A saddle-node bifurcation is the disappearance of a system equilibrium as 

parameters change slowly. The saddle-node bifurcation of mot interest to power 
system engineers occurs when a stable equilibrium at which the power system 
operates disappears [1]. The consequence of this loss of the operating 
equilibrium is that the system state changes dynamically. In particular, the 
dynamics can be such that the system voltages fall in a voltage collapse. Since a 
saddle-node bifurcation can cause a voltage collapse there for it is useful to study 
saddle-node bifurcations of power system models in order to avoid these 
collapses, such as using PID controller to control saddle-node bifurcations [17]. 
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3. Reactive Power and Voltage Collapse:
Voltage collapse typically occurs in power systems which are heavily 

loaded, faulted and/or have reactive power shortages.  Voltage collapse is system 
instability that it involves many power system components and their variables at 
once. Indeed, voltage collapse often involves an entire power system, although it 
usually has a relatively larger involvement in one particular area of the power 
system [1].  

Although many other variables are typically involved, some physical 
insight into the nature of voltage collapse may be gained by examining the 
production, transmission and consumption of reactive power. Voltage collapse is 
associated with the reactive power demands of loads not being met because of 
limitations in the production and transmission of reactive power. Limitations are 
the productions of reactive power include generator and SVC reactive power 
limits and the reduced reactive power produced by capacitors at low voltages. 
The primary limitations on the transmission of reactive power are the high 
reactive power loss on heavily loaded lines and line outages.  Reactive power 
demands of loads increases with the increasing of load, motor stalling, or 
changes in load composition such as an increased proportion of compressor load. 

4. The Model 
This section summarizes an example from [4] to illustrate how voltage 

collapse model applies to the power system model shown in Fig.(1). One 
generator is a slack bus and the other generator has constant voltage magnitude 
E, and angle dynamics given by the swing equation: 

)sin()sin( 2 mYmEmmmYmVEmPmdmmM  …..(4.1) 
where M, dm, and Pm, are the generator moment of inertia, damping coefficient 
and mechanical power respectively. 

The load model includes a dynamic induction motor based on a model of 
Walve [13] with a constant PQ load in parallel. The induction motor model 
specifies the real and reactive power demands P and Q of the motor in terms of 
load voltage V and frequency . The combined model for the motor and the PQ 
load [2] is: 

)(1 VTVKKPPoP pVpw                                             …..(4.2) 

2
21 VKVKKQQoQ qVqVqw                                        …..(4.3) 

where Po, Qo are the constant real and reactive powers of the motor and P1, Q1
represent the PQ load.
From eq.(4.3): 

Kqw

QQoQVKqvVKqv 12 2

                                                  …..(4.4) 

Substituted eq. (4.4) in eq.(4.2) we get: 

KpvKqwT

PPPoKqwQQQoKpwVKpvKqwKqvKpwVKqvKpw
V

)1()1()(2 2

..(4.5)
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thus,
mm                                                                                                   …..(4.6) 

From eq.(4.1)&(4.6) we get: 

M

mYmEmmmYmVEmPmmdm
m

)sin()sin( 2

 …..(4.7) 

 In eq.(4.3) Q1 is chosen as the system parameter so that increasing Q1
corresponds to increasing the load reactive power demand. The load also 
includes a capacitor C as part of its constant impedance representation in order to 
maintain the voltage magnitude at a normal and reasonable value. It is 
convenient to derive the Thevenin equivalent circuit with the capacitor. The 
adjusted values are: 

)cos(
2
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Eo                                                             …..(4.8) 
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oo                                                         …..(4.10) 

The real and reactive powers supplied to the load by the network are: 
)sin()'sin(''),( mmYmVEmoVYoEoVP

))sin()'sin('(2 mYmoYoV                                             …..(4.11) 

)cos()'cos(''),( mmYmVEmoVYoEoVQ

))cos()'cos('(2 mYmoYoV                                           …..(4.12) 
In order to compute bifurcation value Q1 and the associated bifurcation 
equilibrium point, the following approximate formulas [15] are used as shown in 
appendix (A) equation (A3). The bifurcation value is:   

0'2''1 2VYmYoKqvVYmEmYoEoKqvQQo …..(4.13)
and the voltage magnitude at the bifurcation equilibrium point is:

Qo
YmYoKqv

YmEmYoEoKqv
Q

'24

'' 2
*
1 …..(4.14)

Formulas (4.13) and (4.14) are derived from the approximate static model given 
in Ref.[15]: 

YmYoKqv

YmEmYoEoKqv
V

'24

''*
                                              …..(4.15) 

The last three equations show the relationship between the bifurcation point and 
certain load, transmission network and generator parameters.  
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5. Bifurcations
Consider the modified power system model described by Ref.[2] which is 

given by (4.1), (4.2)&(4.3) in the general form: 
),(xFx                                                                           …..(5.1) 

where x is the state vector and  is a time-varying parameter vector. Specifically, 
in the power system model described in section (4), x = ( V) and  denotes 
the parameter vector that includes real and reactive power demands at each load 
bus. The parameters in (5.1) are subject to variation and, as a result, changes may 
occur in the qualitative structure of the solutions of the static equation associated 
with (5.1), i.e., solutions of F(x, =0 for certain values of . For example, a 
change in the number of solutions for x may occur as the parameters vary. As a 
result, the dynamic behavior of (5.1) may be altered.  

Bifurcation theory [1] is concerned with branching of the static solutions of 
(5.1) and, in particular, it is interested in how solutions x( ) branch as  varies. 
These changes, when they occur, are called Bifurcations and the parameter 
values at which a bifurcation happens are called bifurcation values.

It is important in our following analysis of voltage collapse to distinguish 
two different periods: the period before bifurcation and the period after 
bifurcation.  Power systems are normally operated near a stable equilibrium 
point.  As system parameters change slowly, the stable equilibrium point changes 
position but remains a stable equilibrium point.  This situation may be modeled 
with the static model F(x, )=0 by regarding F(x, )=0 as specifying the position 
of the stable equilibrium point x as a function of .  (Here it would be more 
precise to call F(x, )=0 a quasistatic model since  varies and causes 
corresponding variations  in (x).  This model may also be called parametric load 
flow model. Exceptionally, variation in  will cause the stable equilibrium point 
to bifurcate. The stable equilibrium point of (5.1) may then disappear or become 
unstable depending on the way in which the parameter is varied and the specific 
structure of the system.  

After the bifurcation, the system state will evolve according to the 
dynamics of (5.1). (Some types of bifurcation result in the persistence of the 
stable equilibrium point even after the bifurcation and the static model apply just 
as before the bifurcation.  However, we do not expect this sort of bifurcation to 
be typical in power systems.) To summarize, analysis of a typical bifurcation of a 

0Eo mEmC

V

Fig.(1) Power System Model.
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stable equilibrium point in a power system with slowly moving parameters has 
two parts: 
(1) Before the bifurcation when the (quasi) static model applies. 
(2) After the bifurcation when the dynamical model (5.1) applies. 
The current research on voltage collapse uses the static model and only considers 
the system before the bifurcation.   

6. Simulation Procedure 
In this work, the voltage stability procedure used to perform the simulation 

by the proposed model would be presented by a simple block diagram as shown 
in Fig.(2). The simulation have been made with the use of the step-by-step 
solution with using ode15s, ordinary differential equations which used to solve 
stiff problem with good accuracy. The used program is Matlab 6.0 [8] to which 
fast and accuracy results could be obtained. The differential equations from 4.1 
to 4.7 are arrangement in such away by using the following figure to the results.  

Fig.(2) Simulink model for the sample system. 
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7. Results and Discussion 
A model of the sample system shown in Fig.(1) and foregoing equations 

are used to illustrate the process of voltage collapse. For the bifurcations 
analysis, Fig.(3) shows the bifurcation diagram, which is appears the relates 
between voltage magnitude V and reactive power demand Q1. This figure 
investigates a generic mechanism leading to disappearance of stable equilibrium 
points and the consequent system dynamics for one-parameter dynamical 
systems. To simplify the discussion, note first that in Fig.(3) which shows the 
relation between six bifurcation’s depicted. For Q1<10.95,a stable equilibrium 
point exists. (Upper left in Fig.(3)). As Q1 is increased, an unstable (“sub-
critical”) Hopf bifurcation is encountered at point Q1=10.95. As Q1 is increased 
further the stationary point regains stability at Q1=Q1*=11.42 through a stable 
(“supercritical”) Hopf bifurcation. 

Fig.(4) shows an example of a typical voltage collapse, for the fourth order 
models, phenomenon after a saddle node bifurcation. The initial conditions used 
to generate the simulations are: 9.0,14.0,001.0,35.0 Vandm . Note the 

oscillatory nature of solution due to varying in Q1, where Q1=11.25+0.005t The 
previous example, Fig.(4), demonstrated the center manifold model for the 

Stable equilibrium 

Unstable equilibrium 

Saddle-node bifurcation. 
Saddle-node for periodic orbits bifurcation. 

Period-doubling bifurcation. 

Hopf bifurcation. 

Stable periodic orbit. 

Unstable periodic orbit. 

Fig.(3) Bifurcation diagram. 
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dynamics of voltage collapse after a saddle node bifurcation. Now we simulate 
the behavior of the example both before and after the bifurcation to illustrate the 
entire process (we use the same set parameters as that in the above except Ym
and capacitance C changes with bifurcation value Q1*, Q1*=Q1 at saddle node). 
The system can supply sufficient reactive power to the load while Q1<Q1*.
After the bifurcation, the behavior is similar to that predicted by the dynamical 
center manifold model. Fig.(5) shown the relationship between the transmission 
line parameter and the bifurcation value (Q1*). This figure indicates that a larger 
transmission capacity ensures a larger bifurcation value.  

One good and efficient way to increase the capacity of the power  system is 
to using reactive power compensation such as using capacitors at load bus as 
shown in Fig.(1). The relationship between the bifurcation value of the system, 
which described in equations (4.1-4.15) and the amount of capacity installed at 
load bus is shown in Fig.(6), which shows also the effects on load voltage (V). 

 The previous figure, Fig.(3), shows what happens as the reactive power 
demand Q1 increases. For Q1<10.95 only a point stable (ps) and an point 
unstable (pu) equilibrium exit. Voltage collapse happens when a perturbation 
kicks the system out of the basin of attraction. Fig.(7) shows the relationship 
between m, ,and V where at the moment of bifurcation Wu(pu), unstable 
manifold, no longer goes to ps but accumulates on u instead. Therefore Wu(pu)
is contained in Ws( u), stable manifold, the basin of attraction of ps can no 
longer have the trumpet shape. For larger Q1-values Wu(pu) lies outside Ws( u)
and is no longer part of the basin of attraction of ps. Fig.(8) shows the 
relationship between m and when the system goes toward voltage collapse. 

Fig.(9) shows the stable manifold periodic orbit with long simulation time 
equal to 180 sec. In this case small disturbances cannot push the system out of 
the basin of attraction, i.e. the system always operates near ps.      

8. Conclusions 
Several voltage collapses are of slowly decreasing voltage nature followed 

by an accelerating collapse in voltage. In this paper we clarify the static and 
dynamic models used to explain this type of voltage collapse where the static 
model is used before a saddle-node bifurcation and the dynamic model is 
employed after the bifurcation. 

Bifurcations have been studied for a power system dynamic model, which 
has previously been used to illustrate voltage collapse. It was found that for this 
model, the nominal operating point undergoes dynamic bifurcations prior to the 
static bifurcation to which voltage collapse has been attributed. These dynamic 
bifurcations result in a reduced stability margin in parameter space. Moreover, a 
short oscillatory voltage transient typically occurs prior to voltage collapse for 
this model. In addition, it was found that the model admits large amplitude 
bifurcations including cyclic fold and period doubling bifurcations; the latter 
leading to period doubling cascades and the resulting chaotic behavior. The 
relative importance of these effects in general power systems under stressed 
conditions is a topic for further research. 
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Most of the previous analysis of voltage collapse has considered only the 
period before bifurcation. In this paper we show by an example that voltage 
collapse can be prospective before it happens and can be treated by reactive 
power control (Q) or by load shedding (P).

Appendix (A): (Compute bifurcation value Q1) 
A saddle node bifurcation was found by solving equations 4.4, 4.5 and 4.7 

with left hand side equal to zero as shown in Fig.(3). So from equation 4.4 can be 
obtain the following equation: 

012 2 QQoQVKqvVKqv                                                  …..(A1) 
All angles at this point (saddle node) near to zero so equation 4.11 modified to  

)'('' 2 YmYoVVYmEmVYoEoQ                                               …..(A2) 
Substituted equation (A2) in equation (A1) 

0'2''1 2VYmYoKqvVYmVmYoEoKqvQQo   …..(A3)
The voltage magnitude at the bifurcation equilibrium point are shown in 

the following equations, which driven from the approximate static model given 
in Ref.[15] and the above formulas, : 

Qo
YmYoKqv

YmEmYoEoKqv
Q

'24

'' 2
*
1 …..(A4)

YmYoKqv

YmEmYoEoKqv
V

'24

''*
                                                          …..(A5) 

Appendix (B):
The sample power system parameter values used in the simulation are [2]: 

,4.0Kpw ,3.0Kpv ,03.0Kqw ,8.2Kqv ,1.22Kqv 3.1,6.0,5.8 QoPoT
0.5,5.2',0.12',0.8',0.12,0.1,0.5,0.20,0.01 YmEooYoCEooYoP

05.0,3.0,0.1,0.1,0.5 DMPmEmm . All parameter values are in per 
unit except for angles, which are in degrees. 
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(b)

(a)

(c)

Fig.(4) Voltage magnitude, angles ( m,  ), and varying Q1 with the time 
at load bus when bifurcation occurs.
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Fig.(5) Relationship between the transmission line parameter and: 
One) Voltage magnitude at bifurcation point.   
Two) The bifurcation value (Q1*) and Voltage magnitude at bifurcation point.   

(b)

(a)
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Fig.(6) Relationship between the installed capacity at the load bus and: 
(a) The bifurcation value (Q1*).
(b) The bifurcation value (Q1*) and Voltage magnitude at bifurcation point.  

(a)

(b)
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(a)

(b)
Fig.(7) Relationship between m & , where: 

(a) Unstable chaotic orbit for Q1=11.25+ 0.005t, simulation time=32.919sec.  
     (b)A stable periodic orbit for Q1=11.25+ 0.005t, simulation time=2.65sec. 
          Where Ps & Pu are points of stable and unstable respectively.



Al_Rafidain engineering Vol.13 No.1 2005 

40

Fig.(8) Relationship between m &  with simulation time=30sec, where: 
(a) Unstable chaotic orbit for Q1=11.25+ 0.005658t.

     (b)A stable periodic orbit for Q1>11.42.

(a)

Q1*=11.42

(b)
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(c)

Fig.(9) The stable manifold periodic orbit with long simulation 
time=180sec, where: 
(a) Relationship between m,  &V .
(b) Relationship between V & Time. 
(c) Relationship between m,  & Time.

(a)

(b)


