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Abstract

This paper presents an intelligent classification technique to identify normal and
abnormal slices of the magnetic resonance human brain images(MRI). The prtoposed
hybrid technique consists of four subsequent stages; namely, dimensionality reduction,
preprocessing, feature extraction, and classification. In the initial stages, the
enhancement and removed unwanted information are applied to provide a more
appropriate image for the subsequent automated stages. In feature extraction stage, the
most efficient features like statistical, and Haar wavelet features are extracted from each
slice of brain MR images. In the classification stage, initially performs classification
process by utilizing Fuzzy Inference System (FIS) and secondly Feed Forward Neural
Network (FFNN) is used to classify the brain tissue to normal or abnormal.

The proposed automated system is tested on a data set of 572 MRI images using T1
horizontal transverse (axial) section of the brain. Hybrid method yields high sensitivity
of 100%, specificity of 100% and overall accuracy of 95.66% over FIS and FFNN. The
classification result shows that the proposed hybrid techniques are robust and effective
compared with other recently work.

Keywords: Brain Tumor Classification; Fuzzy Inference System; Feed Forward Neural
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1. Introduction

Tumor is one of the most common brain diseases, according to the data from World Health
Organization (WHO), it accounts for the top-ten mortality over the world today. Accurate and
earlier diagnosis and appropriate treatment can be a great help for reducing the mortality[1].

Recently the development in medical imaging techniques provides us with more and more
facilities for better diagnosis and treatment, such as ultrasonic (US), computed tomography
(CT), magnetic resonance imaging (MRI) and other modalities. MRI is the most frequently
used imaging technique in neuroscience and neurosurgery for these applications, especially in
the diagnosis of tumor. MRI creates a 3D image which perfectly visualizes anatomic
structures of the brain such as brain tissues and brain tumors if existing. The advantages of
MRI over other diagnostic imaging modalities are its higher spatial resolution and its better
discrimination of soft tissue, for example, tumor in brain. Fully automatic normal and
diseased human brain classification from magnetic resonance images (MRI) is of great
importance for research and clinical studies.

In order to distinguish different tissues, RF pulses are applied by the imaging system to
the human body in the main magnetic field. When the resonator detects a signal under
controlled condition, different images can be acquired and information related to tissue
contrast may be obtained, revealing details that can be missed in other conditions. The amount
of signal produced by specific tissue types is determined by their number of mobile hydrogen
protons, the speed at which they are moving, and the time needed for the protons within the
tissue to return to their original state of magnetization (T1) and the time required for the
protons perturbed into coherent oscillation by the radiofrequency pulse to loose their
coherence (T2) relaxation times. As T1 (spin-lattice) and T2 (spin-spin) relaxation times are
time dependent, the timing of the radio frequency pulse and the reading of the radiated RF
energy change the appearance of the image[2,3].

MRI imaging sequences are composed of multiple slices, of which the positions and
thickness can be chosen randomly, and each image indicates a different essential parameter of
inner anatomical structures in the same body section with multiple differences, based on the
local variations of spin—spin relaxation time (T2), spin—lattice relaxation time (T1) as shown
in Figure 1 [4].

The rest of the paper is organized as follows: Section 2 reviews the related works with
respect to the proposed method. Section 3 describes the proposed methodology for MRI brain
image tissues classification. Section 4 discusses about the implementation of the proposed
algorithm, and Section 5 demonstrate the experiment result. Finally, conclusions are drawn in
Section 6.

Transverse view T1 Transverse view T 2 Coronal view T1 Sagital View T2

Figurel: Examples of MRI weighted images
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2. Related Works:-

Detection of the tumors from brain is very difficult at the regions where a tumor is
overlapped with dense brain tissues. Visually detection of these abnormal tissues may result
in misdiagnosis of volume and location of unwanted tissues due to human errors caused by
visual fatigue. Nowadays, automatic brain tumor detection in MRI images is very important
in many diagnostic and therapeutic applications. In the early research of medical tumor
detection, the algorithms have directly used the classic methods of image processing (such as
edge detection and region growing) based on gray intensities of images. In recent years, those
techniques have been combined with artificial neural networks (ANNSs)[5], genetic algorithm
(GA)[6], fuzzy logic[7], and Texture features are used for classification and segmentation in
Ref.[8,9,10,11]. Recent works Zhang Nan 2011, have shown that classification of human
brain in MRI images is possible via multi-kernel support vector machine (SVM) and adaptive
training is designed to follow-up the changes of tumors during several MRI examinations. In
Ref. [3], the author perform unsupervised brain tumor segmentation, and region detection
using hybrid intelligent fuzzy Hopfield neural network.

The authors in Ref. [2] develop a segmentation technique initially performs classification
process by utilizing Fuzzy Inference System (FIS) and FFBNN. In several of previous works
[8, 9, 10, 11] demonstrated the effectiveness of texture features in characterizing brain tumor
tissue and analyzed the irregular texture variations of tumors in MRI. M. Jafari and S. Kasaei
suggest a novel neural network-based classifier to distinguish normal and abnormal (benign or
malignant) brain MRIs[12]. V. Sheejakumari and B. S. Gomathi presents optimal features for
classifying tissues from the testing image dataset using Hybrid Genetic Algorithm-Neural
Network (HGANN).

The contribution of this paper is the integration of an efficient feature extraction tool and a
robust classifier to perform a more robust and accurate automated MRI normal/abnormal
brain images classification. The proposed hybrid technique initially performs classification
process by utilizing Fuzzy Inference System (FIS) and FFNN. Both classifiers are utilizing
the extracted image features as an input for the classification process.

3. Proposed Automatic Tumor Classification Method:

This paper describes a hybrid method to classify the normal and pathological tissues in the
MRI brain images using FIS and FFNN. Four major stages are involved in the proposed
methodology:
preprocessing
Feature Extraction
Classification by FIS
Brain tissue classification by FFNN

3.1 preprocessing

Segmentation of brain tissue in MRI is a crucial preprocessing step in several medical
research and clinical applications:
1. Label Removal: first of all, remove all labels and markings(patient name, age, gender,,etc)
from the image by applying a background color to there places.
2. Image Cropped: Then the images are cropped from all sides until reach the boundaries of
the skull to get rid of unnecessary information which represent the background, and by
removing labels from the image in the first step we actually converted that portions of the
image to the background which is cropped now.
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3. Size Standardization: The variations in the brain size and shape of persons need to be taken
into account before any general technique is applied. To handle this issue, each MRI image is
first cropped by detecting the brain boundary and then resized to 256*256.

3.2 Feature Extraction

To perform the tissue classification process, efficient and appropriate features are
selected from the MRI images. The feature selection process plays an important role in the
tissues classification and extraction of useful features is a challenging task. Many statistical
and other histogram based features are used in the existing methods, which are discussed in
the literature. In the proposed system, five features are extracted from the MRI images: they
are two dynamic statistical features and three 2D wavelet decomposition features. Namely,
statistical features such as mean and variance, and multilevel 2D wavelet decomposition
features such as horizontal, vertical, diagonal bands of wavelet transform. The feature vector :

Fe{Ms Eo He Ve D} e 1)

Mean and Variance features are extracted directly from the section slices, as below:

1

Ms= < im M_IYN_S(n,m) )
1

Ee= —— M_ YN _(S(n,m) —Ms)® 3)

Where S is the MR image slices, N and M are number of pixels available in rows and
columns of images respectively.

To obtain the wavelet features, here haar wavelet is applied to the slice and performed two
levels of wavelet transform. After preformed the second level of wavelet transform, three
features are extracted (HL, LH and HH) from the result image. The computation of these three
features are described in the following equations:

1
Hs:_ 21-—12§=1 h(i,j) (4)
‘EZ L Yv@) (5)
—EZ LXd ) (6)

In equations (4), (5), (6) the parameters h,v and d are the coefficients of the horizontal,
vertical, and diagonal bands of MRI image slice. | and J are number of pixels available in
rows and columns of each bands.

3.3 Fuzzy Inference System (FIS)

The fuzzy inference system normally contains three major operations: Fuzzification,
Rules Evaluation and Defuzzification. Fuzzy inference is the process of creating a mapping
from a given input to an output by means of a fuzzy logic. Then, the mapping provides a basis
from which decisions can be made, or patterns discerned. The process of fuzzy inference
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involves Membership Functions, Logical Operations, and If-Then Rules. The schematic

diagram of the fuzzy inference system (FIS) is shown in Figure:2.
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Figure 2: Fuzzy Inference System
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Here in the FIS the rules are extracted from all features of each training slice. Values of
these features are considered as inputs to the fuzzy system and these features are collected and
divided into three levels: High denoted by (H), Medium denoted by (M) and Low denoted by
(L), and the output is divided into two levels: high (H) which indicates that there is an
abnormal tissue (tumor) in the slice and Low (L) which indicates that the slice is normal.

3.4 Neural Network:

A neuro-based classifier model is added for best discrimination of abnormal and normal
patterns from brain regions based on the same extracted features. A three-layer Feed-Forward
Neural Network (FFNN) has been constructed for excellent decision. Five neurons are used in
the input layer, which equal to the number of features, three in the hidden layer and one in
the output layer as shown in Figure: 3.

Input Layer Hidden Layer

Output Layer

Figure 3: Feed Forward Neural Network
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4. Implementation of Proposed Methodology

4.1 MR Image Data

All slices in this work were gathered on 1.5T magnetic field, by PHILIPS MR Scanner
manufactured by Philips Medical System/Netherlands with a serial number of 20415 having
the following features: a DCM coding scheme designator having a pixel bandwidth of 235.3
Hz and a pixel presentation of Monochrome and a 2D acquisition type. Thickness of the slice
is 5bmm with 2 mm gap between slices and total number of slices of 22 slice. The view
sections are the sagital, coronal and axial with all the TIW-FFE, T2W-TSE, T2W-Fair and
MR survey.

4.2 Training & Testing Data

The MRI image slices were grouped into two classes, namely normal and abnormal
depending on the tumor present in the slice. The MRI data set contains 572 slices (69
abnormal slices and 503 normal slices) and from which two different sets are grouped to have
FIS and FFNN training of classifier. After detecting the infected slices using the Fuzzy
system, only 33 slice are remained to be used with the feed forward neural network. In the
beginning set, an FIS system is applied to all features, containing rules about all the normal
and abnormal slices for all patients. If the output is less than DV(40%-60%) the slice is
considered as normal. If it's output is greater than DV it is considered as abnormal, but if it's
output equals Dv then it needs the next step which is the neural network and as mentioned
before, 33 slice remained to be applied to it, 22 of them were used as a training set and 12 of
them as testing. Figure:4 represents the proposed feature in training phase and testing phase.

Input MRI MRI Brain
Brain Images Testing Images
Preprocessing Preprocessing
v v
Feature Extraction Feature Extraction
v v
Heuristic Decision Tissues
Value(DV) by FIS Classification by FIS
v
FFNN training using @ No
Same Features Yes v

Tissues Classification|,| Decision
C_END_ D by FFNN
(a)Training Phase (b)Testing Phase

Figure 4: Proposed Classification Method (a)Training Phase (b)Testing Phase
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The hybrid learning system use the statistical and wavelet features from the segmented
MRI brain slice then these features are given as input to the Fuzzy membership and it is
fuzzification using the gbell membership function to the inputs that have three levels L, M
and H and to the output that has two levels L and H as shown in figure 5:
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Figure 5: (a) Fuzzy Inference System (b) Membership function of the input (c)
Membership function of the output (a) Fuzzy Rules

According to the classification results, the proposed fuzzy system is not enough for
some cases when the output between (0.4-0.6) Decision Value. Therefore, neural classifier
are added for these cases utilizing same features as input to the additional classified stage
which perform by feed forward neural network as shown in figure 6.
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Figure 6: Flow Chart of the Proposed Hybrid Technique

A three layer neural network was created with five nodes in the first (input) layer, one to
five nodes in the hidden layer, and one node as the output layer. The training required 3368
epochs to decide truly about the existence of tumors having a mean square error about 4.14e-7
and total time about 44 sec using Levenberg-Marquardt algorithm of training as shown in
figure 7. The number of nodes in the hidden layer are varied from (1to 5) in a simulation in
order to determine the optimal number of hidden nodes. Due to hardware limitations, three
nodes in the hidden layer were selected to run the final simulation.
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Figure 7: (a) Feed Forward Neural Network System FFNN (b) FFNN
Performance Platform

The output node resulted in either a 0 or 1, for control or patient data respectively. Since
the nodes in the input layer could take in values from a large range, a transfer function was
used to transform data first, before sending it to the hidden layer, and then was transformed
with another transfer function before sending it to the output layer. In this case, a sigmoid
transfer function was used between the input and hidden layer, and a sigmoid function was
used between the hidden layer and the output layer.

5. Experimental Results

Two datasets have been constructed, one for the training and the other for testing both
datasets contain normal cases and abnormal cases at different types of brain tumor.

The Proposed algorithm successfully trained in Matlab version 7.12.0.635, the results of
dual classifiers for all patients are tabulated in Table 1. The hybrid proposed algorithms are
evaluated in terms of sensitivity (Se), specificity (Sp) and accuracy (Acc). Taking Table 2 into
account the metrics are defined as:

T
e T *100%) 7
T
Sp = TNfFP £100%) e, (8)
Tp+TN

cc = TpTFNTTNIFP *100%) )
Where::

True Positive (TP): the classification result is positive in the presence of the clinical
abnormality.

True Negative (TN): the classification result is negative in the absence of the clinical
abnormality.

False Positive (FP): the classification result is positive in the absence of the clinical
abnormality.

False Negative (FN): the classification result is negative in the presence of the clinical
abnormality.
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Table:2 Classification Results of VVarious Classifiers

- . Sensitivity | Specificity |Accuracy
Classifier Type Algorithm Reference % % %
LSSVM- RBF 13 99.64 95.50 98.64
Support Vector |[LSSVM-linear 13 97.48 92.13 96.17
Machine SVM- RBF 13 96.40 91.10 95.09
SVM-linear 13 93.53 89.89 92.64
Neural MLP 13 94.24 83.15 91.55
RBF 13 94.60 85.39 92.37
Statistical KNN 13 93.53 77.53 89.65
Fuzzy FCM 14 55 62 60
Geostatistical 5 14 76 78 74
Possibilistic
Geostatistical GECM 14 90 94 95
Fuzzy
DWT+PCA+ANN 15 98.3 81.8 95.7
Hybrid Technique DWT+PCA+k-NN 15 98.4 100 98.6
SGLDM+GA+SVM 16 91.87 100 94.44
DWT+SGLDM+GA+SVM 16 94.6 100 96.29
Proposed FIS+FFNN(Slices) 100 100 95.66
Technique
.F;ggﬁ‘r’]?g‘je FIS+FENN(Patients) 100 100 100

6. Conclusion

In this paper, the computer based technique for automatic classification of MRI slices
as normal or abnormal with various MR image features using dual classifiers was proposed.
The performances of the classifiers in terms of statistical measures such as sensitivity,
specificity and classification accuracy are analyzed. The results indicated that the FIS-FFNN
approach yielded the better performance when compared to other classifiers.

According to the experimental results, total number of processed image slices were 572
slice for 26 person, 11 of them have tumors and 15 are tumor free. 10 persons are detected
from total 11 using the designed FIS system which makes the success rate in persons equals to
90.909%.The affected image slices are 69 slice and all of them are detected but with addition
of normal slices which makes the success rate of MRI image slices about 95.66%.

This FIS system was able to find two persons from a total of 15 persons who are not
affected thus the system worked on normal tissues too but with a simple rate that is about
13.33% and it was completed to 100% by applying the FFNN to the remaining slices which
couldn't be detected using the FIS system so the success rate of the Neuro-Fuzzy system was
assured by 100% for all slices of normal and abnormal images.

The FIS system completed 46.15% from the overall work and the Neural Network
completed the remaining which is 53.85% to become 100%.
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