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Abstract

In this paper, four different shapes of robots' hollow arm are suggested so as to inves-
tigate the effect of shape on the dynamic behavior of the arm. The finite element method
IS used to determine the strength of the arms and their equations of motion. The static
deflection, stress and moment of inertia are calculated and compared as well as the an-
gular displacement and tip vibration of the four different shapes.

A PD controller with fuzzy logic is used for tracing the desired trajectory and reduc-
ing the overshoot of the system. All simulations were presented using MATLAB and
SIMULINK on the arms under the same desired step trajectory for a time of two sec-
onds. The preferred robot arm is the one that has less vibration in trajectory and after
reaching the target. As a result, the tapered arm (shape B) shows better characteristics
in which less deflection, stress and tracking.
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1. Introduction

Robotic manipulation tasks are becoming more demanding as the potential for such ma-
nipulators to complete these tasks is realized. Industrial robot manipulators of high accuracy
require complicated methods of control. Flexible robot manipulators exhibit many advantages
over rigid robots: they require less material, lighter in weight, consume less power, require
smaller actuators, have less overall cost and higher payload to robot weight ratio. Problems
arise due to precise positioning requirements, system flexibility which leads to vibration [1,2].

Various approaches have been developed previously for modeling of flexible manipula-
tors. These can be divided into two main categories: the assumed modes method (AMM) and
the numerical analysis approach. Using the assumed modes approach, a control method at
terminal stage of movement has been developed and engaged with PID in [4]. Numerical
analysis techniques include finite difference (FD) and finite element (FE) methods. The per-
formance of the FE technique in modeling of flexible manipulators has previously been inves-
tigated [5]. It has been reported that in using the FE method, a single element is sufficient to
describe the dynamic behavior of a flexible manipulator reasonably well. Simulation and ex-
perimental results of the response of flexible manipulator were presented in [6].

In the control of flexible link robot manipulator, a variety of control techniques are popu-
lar, such as PID control, computed torque control, adaptive control etc. Recently, intelligent
controllers have been used to control robot manipulators [7]. Composite controller using neu-
ral network plus Fuzzy PD feedback is used to control multi-link flexible manipulator as in

[8].
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Figure (1) Four different shapes of robot’s arm

In the present work four different shapes of robot’s arm are suggested and investigated
(Fig. (1)). The cross-sectional area of three of them is assumed to be a function of the length.
The investigation includes calculating the strength of the arms and their dynamic response to
input torque. The finite element method is used to discretize the equations of motion and to
model the different shapes of robot’s arm. Fuzzy supervisor for PD controller is used for tra-
jectory tracking.
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2-Finite Element Analysis

2.1 Static Analysis

In this study, the stresses and deflections are found with the Ansys software package ver-
sion 14. The stress and deflection of the arm are calculated under the effect of its own weight.
For Shape A (Fig. 1), the cross sectional area is considered constant; while for the other three
as a function of length. The maximum cross sectional area (Amax = 0.00012 m?) is at the fixed
end; while the minimum (Amin = 0.00006 m2) is at the free end. The arm’s width is assumed
constant and equals to 0.02 m. The arms are assumed to be made of aluminum having the fol-
lowing material characteristics: density, p = 2710 kg/m*; Modulus of elasticity, E = 71.109
MPa; Length, | = 1m. Also a = 0.003 m; b = 0.0015 m. The maximum stress (6 max), Maxi-
mum deflection (6 max), and mass moment of inertia (I,) are calculated and presented in table
(1). Maximum stress is developed in shape A and D, while the minimum is developed in
shape B. Also comparison study of deflection shows that the maximum value is obtained in
shape C, while minimum value is in shape D.

Although the above strength test gave a useful information, but for flexible robots arm the
dynamic behavior is very important. Thus the dynamic analysis is used to model these differ-
ent arm’s shapes.

Table (1) Results of static loading comparisons for different arm’s shapes.

Shape Gmax MPa Smax (M) Function Iy (kg-m?)
A 19.2 0.0125 y(x)=a 0.08943
B 11.4 0.01132 y(x)=a—b-(x/L) 0.05589
C 14.5 0.0204 y(x)=a—b-(x/L)""? 0.05101
D 19.8 0.01008 y(x)=a—b-(x/L)? 0.06260

2.2 The dynamic Analysis
The flexible arm as shown in Fig. 2 is considered clamped at the hub. The Bernoulli-Euler
beam theory is used to model the
elastic behavior of the manipulator.
Considering linear displacements, _ flexibie link (. E, 1, L)
the total displacement y(x,t) at a
distance x from the frame origin in
the OX direction can be described
as a function of both the rigid body
motion O(t) and elastic deflection
v(X,t) as:

y(X,t) =Xx-0+Vv(X,t) (1)

rigid Mk (J, r)

Using the standard FE method to  Fjgyre (2) Mechanical model of a single flexible arm
solve dynamic problems, leads to

the well known equation:
V(X, 1) =0,(x)-Q,(t) (2)
where o,(X) and Qq(t) represents the shape function and nodal displacement respectively.
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The arm is approximated by partitioning it into k elements. As a consequence of using the
Bernoulli-Euler beam theory, the FE method requires each node to possess two degrees of
freedom, a transverse deflection and a rotation. These necessitate the use of Hermit cubic ba-
sis functions as the element shape function [9]. Hence, for the elemental length I, the shape
function can be obtained as:

G, =[0.(X) @, (X) 9;(X) 0, (X)]
where

2 3 2 3
() =12+ 2 ) =x- 2

I° I° I P

3x> 2x3 x> X3
(Ps(x):|—2—|—3 (P4(X)=T+I—2

For element k the nodal displacement vector is given as:

Qa=[Vi1i() Oka(t) Vi(t) Ok(t)]

where Vi.1(t) and vi(t) are the elastic deflections of the element and 0.1 and 6 () are the cor-
responding rotations. Substituting for v(x,t) from (2) into (1) and simplifying yields:

y(x, 1) =o(x) - Q(t) 3)

where

o(x)=[x o,(x)] ad Q)=[o(t) Q,(t)]

The new shape functions o(x) and nodal displacement vector Q(t) in (3) incorporate local and
global variables. Among these, the angle 0(t) and the distance x are global variables while
0a(X) and Q,(t) are local variables. Defining

S=X— Z::ll I,

as a local variable of the k™ element, where |; is the length of the i element, the kinetic ener-
gy of an element k can be expressed as:

T, =%jp A(S)[%} ds=2Q' _[p AG) (7o) ds|Q

where A(s) is the cross-sectional area of the beam. The potential energy of the element can be
obtained as:

(3

> Q) ds

e, [2Y6E 0T s - e (970 oy (97
vk_2£E|[ }ds_zgeudSzQ) Cqs
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Using the Lagrange equation after assembling the element mass and stiffness matrices, the
dynamic equations of motion of the flexible manipulator can be obtained as:

M Q(t) + K Q(t) = f (1)

where M and K are global mass and stiffness matrices of the manipulator respectively, and f is
vector of external forces. For more details about the derivation of these matrices see [6].

3-Fuzzy Logic Controller

A fuzzy logic controller can be regarded as an expert system with a knowledge representa-
tion based on the use of fuzzy set description. It has a collection of rules which are stored in a
knowledge base, that express how the system parameters vary as input is varied in a linguistic
form. The design of a fuzzy controller involves the following steps: a definition of controller
structure, the acquisition and representation of knowledge or rule base, and the design / analy-
sis of the controller. A synoptic of Fuzzy Logic Controller which is made of three compo-
nents: the knowledge or rule base, reasoning / inference mechanism and input / output inter-
face [10]. Knowledge or rule base comprises of cognition of application domain and the de-
sired output response. It consists of a data base and fuzzy control rule base which characteriz-
es the desired output response applied by the operative by means of a set of control rules. The
rules use a linguistic description based on expert knowledge.

3.1 Fuzzy Supervisor for PD

The objective of the fuzzy supervisor is to gradually increase the proportional and deriva-
tive gains of the controller, as the system error approaches zero, so as to improve the response
of the system. A general block dia-

gram of a fuzzy supervised system is ———* Fugy
shown in Fig. 3. System control is d| | Logic
still accomplished by the Zieglar- gt | 7| Supenvisor
Nicolas tuned controller, however, / fllr
the gain values Kp and Kp are now
controlled by the FLS (fuzzy logic / /
supervisor). The general structure of | + ) / /

the FLS is similar to that of the FLC. — LL° [FD " Plant .
The differences are in the rule base W/ ) CPFTRDL
and the supervisor outputs [11]. The X v /
supervisor outputs (AKp and AKp) l

are the incremental changes to be
made to the existing parameters. Figure (3) PD control with fuzzy supervisor

While the basic operation of the fuzzy supervisor is similar to that of an FLC, it's not
designed to provide incremental changes based on how a human would operate the system. For
conventional PD fuzzy controllers, that a gradual increase in the proportional gain as system
error decreases, reduces the overshoot of the system. This concept is used for the design of
fuzzy supervisor. The development of the supervisor control matrix is based on the observation
of a typical step response shown in Fig. 4 below. The step response is divided into four general
regions, each determined by the sign of the error and change in error. The regions are:
Regionl: positive error, negative change in error. Region2: negative error, negative change in
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error. Region3: negative error, positive

change in error. Region4: positive error,

positive change in error. Region5: (the | 2:\ (3) (7 Positive E
zero region) is used when both the error /‘\ \_) Negaive dE
and change in error values are near zero /o N ~ Newtive E
and it's not dependent on the sign of the ¢ [~ g’ TR T 2 Negative dE
signals. The resultant supervisor control u} [ L TTm

matrix is shown in Table 2. A total of A N O (3) Negative E
nine membership functions for both /R T -/ Poste
input and output signals are used. The / (7 Positive E
membership functions are described as \/ Positive di
NL (negative large), NB (negative big), / S

NM (negative medium), Ns (negative ’ t

small), ZO (zero), PS (positive small),
PM (positive medium), PB (positive Figure (4) typical step response

big), and PL (positive large).

Using the supervisor output (y), the incremental changes are calculated as

AKp=y-Kpand AKp =y Kp 4)

Equation (4) ensures that the original ratio is maintained.

Table 2: Fuzzy Supervisor rule Matrix

Ae\e NL | NB | NM | NS | ZO PS PM PB PL
NL NL | NL | NL | NL PB PB PB | PM | PM
NB NL | NL | NL | NB PB PB PB | PM | PM
NM NL | NL | NB | NM | PB PB | PM | PM PS
NS NL | NB | NM | NS PL PB | PM PS PS
Z0 Z0 NS | NM | NB PL PB | PM PS Z0
PS PS PS PM PB NL | NS | NM | NB | NL
PM PS PM | PM PB NB | NM | NB | NL | NL
PB PM | PM PB PB NB | NB | NL | NL | NL
PL PM | PM PB PB NB | NL | NL | NL | NL

4- Dynamic Simulation of Arm’s Shapes

In order to illustrate the performance of the different arm’s shapes, the four arms are sub-
jected to the same desired step trajectory during a time of two seconds. These different shapes
are chosen with respect to material economic purposes and reducing in moment of inertias. A
PD controller with fuzzy supervisor is used for tracing the desired trajectory. All simulations
were presented using MATLAB and SIMULINK, which are used widely in control applica-
tions. The time step size used in simulation is 0.001 second. PD gains are: Kp = 45 and Kp =
10.

Figs. (5&6) show comparisons of the hub angular displacement and end-point vibration
responses for the four different arm’s shapes respectively. As expected, vibration exists along
the trajectory and after reaching the end point of motion because the hub angular position is
used in the feedback error signal. This will let the arm vibrate under base acceleration freely
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which shows the dynamic behavior of these different arms. Five elements are used to discrete
the arm which describes the first two modes to high accuracy [6]. A large oscillation in the
hub and tip motion appears in Shape A due to the high inertial effects (see Table (1)). The
tapered arm - shape B - presents less vibration during trajectory and after reaching the end
point of motion. In shape C, the vibration is more than that of shape B as the moment of iner-
tia of this arm is less in comparison to that of the other three shapes. Shape D presents less
vibration in comparison to the three other shapes though this shape has higher moment of in-
ertia.
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Figure (5) Hub angular displacement of the four different arm’s shapes
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Figure (6) Tip vibration of the four different arm’s shapes
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Then another comparison is made in which the moment of inertia for all the shapes is tak-
en a fixed value case. The value of moment of inertia for shape C is used as a reference. Fluc-
tuation of shape A hub’s displacement becomes less as shown in Fig. 7. Also from Fig. 8 , the
tip vibration is reduced for shape A. The attenuation for shape A is higher while the effect is
very small for the other three shapes. This attenuation is due to the action of the controller
through the coupling between the flexible arm of shape A and its hub.
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Figure (7) Hub angular displacement of the four different arm’s shapes
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Figure (8) Tip vibration of the four different arm’s shapes
(constant moment of inertia case)
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5-Conclusion

The strength and dynamic behavior are different for the four tested shapes. The arm of
shape B has less displacement fluctuation effect on the hub and small tip vibration in compar-
ison to the other three arm'’s shapes. For the case of constant moment of inertia, the tip vibra-
tion of shape A is quickly attenuated than before; but it stills has fluctuation on hub's dis-
placement due to its inertia. The small fluctuation on hub's angular displacement and tip vi-
bration amplitude makes the arm of shape B has better dynamic behavior. This tapered shape
arm will improve the trajectory tracking and reduce the size of the driver which makes the
actual motion of the flexible arm resembles that of a rigid arm.
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