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Abstract

The design of the proposed Convolutional Neural Network (CNN)
architecture for face image recognition takes the constraints on the
bandwidth of the communications between memory and processor into
the account. The coarse grained parallelism which performed in the
bottom layer node's calculations is reduced in consequent manner until
the calculation of one simple node in the upper layer is achieved
sequentially. Two methods of segmentation are used to buffer the image
data required for these parallel to sequential calculations from the image
RAM to multi-port RAMs. A comparison between these two methods
with respect to the whole number of RAM access required to generate the
system recognition code is performed. A speedup of 44 is achieved when
the hardware system is implemented with the using of the 1* method of
segmentation as compared to a Pentium 4, 2.4 GHz sequential computer
software implementation. While a speedup of 88 is achieved when the
same hardware system is implemented but with the using of the 2™
segmentation method, compared to the same mentioned sequential
computer.

Keywords: convolution neural networks, parallel processing, memory
architecture.
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1 Introduction

Any CPU-based implementation of real-time image processing
algorithm has two major bottlenecks: data transfer bandwidth and
sequential data processing rate. A CPU adds large overhead to the actual
computation. Its time splits among moving data between memory and
registers, applying arithmetic and logic operators on the data, and keeping
the algorithm flow, handling branches, and fetching code. To complete all
these tasks, large number of clock cycles are needed.

Most Digital Image Processing (DIP) algorithms can be decomposed
into simpler operations [1], which are commonly categorized as global,
local, or point operations. Global image processing operations produce an



output in which every value is a function of every pixel in the original
image. An example is a histogram operation, in which the number of
times each individual intensity value or range of intensity values occurs
in the image is counted. This class of operations tends to be the most
difficult to parallelize. A local, or windowed, operation produces an
output that depends on the pixels in the local area about a pixel. An
example of such an operation is an averaging filter, which can be used to
smooth out grainy images. While some local operations are more easily
parallelizable than others, it is generally possible to process multiple
windows in parallel, speeding up the computation. Finally, point (or
pixel) operations produce an output (generally a second image) in which
each output value is a function of only one pixel of the image. These
operations are the most easily parallelizable — in the extreme, every pixel
could be processed simultaneously.

Although image-processing operations may access memory in different
patterns, they share some very important features. First, they are all very
memory intensive. Traditional computing applications perform a
significant amount of processing on each piece of data before loading the
next. However, in image processing at least one new pixel of information
is typically needed for each step in the computation. According to one
study using traditional DSP’s and a variety of common algorithms
(threshold detection, erode/dilate, median, convolve, and others) there are
up to two memory accesses for each floating-point instruction [2].

The temporal locality of the image-processing operations is minimal.
When a pixel is accessed for a local or global operation, it might never be
used again until the operation is repeated. In windowed operations, the
pixel is only needed for the duration of the time it is in the window; when
the window moves past a pixel it will not be accessed again until the
window reaches the end of the current row. Thus, traditional caching
schemes cannot effectively speed up or reduce the number of memory
accesses. However, the spatial locality of image processing operations
tends to be quite high; if a certain pixel of a frame buffer is accessed, the
most likely next accesses are to its immediate neighbors. Because of the



two-dimensional nature of the image (plus the added dimension of time in
video processing), pixels that are adjacent in the image may not be
located at adjacent memory addresses. This reduces the locality of the
data unless complicated memory addressing is used.

An efficient image processor is the one which can overcome on the
bottlenecks that appear in the mentioned CPU implementation. The
sequential processing rate major bottleneck can be overcome simply by
using multiple processors to process the acquired data, whereas, it is
difficult to overcome the data transfer bandwidth bottleneck, since the
acquired image data from image sensors is assumed to be stored in one
frame buffer. Therefore, that imposed that any accessing to the data
should be done sequentially since it can not address more than one
location in one clock cycle.

This paper presents a prototype of an embedded face-recognition
system completely implemented in hardware. The system uses the
Convolutional Neural Network (CNN) to recognize each class of face's
images. A CNN [3] prototype was built using a field programmable gate
array (FPGA). In CNN, every image window is convolved with a number
of pre-trained weight vectors (features). Input image may contain a
number of overlapped windows equal to the number of pixels in the
image. That means, a huge number of memory accesses are required to
complete the convolution processes every image. Each pixel should be
accessed many times depend on the number of windows and the number
of pixels in each window in the image. With the data transfer bandwidth
bottleneck mentioned above adds a negative effect to the benefit and
speedup expected from the hardware implementation of the convolution
processes. To minimize this effect, researchers deal with it in different
ways. For example, by caching the last windows in internal registers to
use its pixel’s data in the next windows calculations [4], or by using a
high density DRAM integrated with computing logics on a single die to
store the image data[1], where a window of 16 pixels could be loaded by
a bus width of 128 bits in a single DRAM cycle. These strategies were
dealing with the problem of minimizing the same pixel reread, while the



approach proposed in this paper tries to solve the problem of pixel reread
from the image frame buffer and to parallelize the pixel buffering to
different storage elements. Therefore, this paper concentrates on the
method used to reduce the data transfer bandwidth major bottleneck
mentioned earlier in this section.

The rest of this paper is organized as flows: second section is a general
overview to the CNN face recognition system with the proposed image
segmentation methods required to transfer the image data for calculations,
and their algorithms. Section 3 includes the results and section 4
represents the conclusions.

2 Hardware Implementation Of Cnn

One of the intentions in developing the parallel convolutional neural
hardware is to provide a powerful platform for challenging biological
inspired applications. Here, we propose a way to utilize this system to
implement the Neocognitron, a massively parallel neural architecture for
image understanding, introduced in the early eighties by Fukushima [5].
In this network model, neurons are organized in functionally equivalent
layers (Fig. 1(a)). Each layer extracts certain shape-features, as for
example edge orientation, from a localized region of the preceding layer
and projects the extracted information to the next higher layer.

The complexity and abstractness of the detected features grow with the
layer height, until complicated objects can be recognized. A layer consists
of a number of feature planes, each of which is assigned to recognize one
specific image feature. Neurons belonging to the same plane are identical
in the sense that they share the same synaptic weights. This architecture,
showing a high degree of self-similarity, seems particularly dedicated to
be implemented on a parallel hardware platform.
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Parallel, distributed processing, seen in convolutional neural network
architectures, are an attractive model for computation. An FPGA VLSI
architecture that implements the hierarchical convolutional networks is
proposed [9][10]. Because the number of processing circuits integrated in
an FPGA chip is restricted, it is difficult to realize all connections of the
hierarchical network by real processing circuits. Therefore, in the
designed architecture, neuron circuits are repetitively used by time-
sharing operation. Time-sharing operation implementation in the
convolutional network is shown in Fig.1(b).

In the other hand, and for the same reason mentioned above, all layers
use the same resources to build a compact resources shared system,
therefore, all layers are executed on the same processing elements unit.
The CNN architecture is a processor array with SIMD control. It consists
of four parts as shown in Fig.1(c).  This is a fairly SIMD array
configuration with one control unit (CU), one memory unit (MU), one
segmentation unit (SU) and many processing elements unit (PEs).

In order to use the network modules in parallel, strategies are necessary
to coordinate the distributed resources. Therefore , the CU controls the
PEs and manages the data flows and signals over the PEs and other units.
CU is responsible of beginning and ending of calculations in each
element in the PEs, and their synchronizations. It consists of many status
registers that manage the successive calculation operations performed in
the PEs. It has also many counters and sequencers which provide the
necessary addresses needed to change data between PEs and MU. MU is



used to store the input data, weights, and other temporary data which
generate during calculations in BRAMs, BROMs and internal registers
respectively. PEs are used to manipulate the CNN layer’s calculations in
consequent manner as it will be discussed in section 2.1.1.

2.1 Segmentation Unit (SU)

The image is assumed to be captured and stored in a single memory
RAM, in row order. In CNN the raw image is partitioned to overlapped
field of views (receptive fields).

In this work, a large receptive field* is defined. This receptive field
contains many overlapped small receptive fields. Note that, the image has
numbers of overlapped large receptive fields.

A large receptive fields are processed sequentially, while their small
receptive fields are processed in parallel to speedup the calculations(as
mentioned in section 1: window operation). Parallel processing needs the
access of the input data in parallel, which could not be met with the data
stored in a single port memory. Therefore, it is urgently needed to
partition the image RAM and transferring the data stored in, to multi-port
RAMs. The total number of ports equal to the number of processing
elements™®*,

The SU is responsible to buffer the data from image RAM to multi-port
(dual port in the FPGA)RAMs. SU provide the necessary interleaving
addresses and signals to perform the required action. SU is interconnected
with CU and MU, while it has no connection with the PEs.

The bottleneck problem associated with the SU is its sequential
implementation since in each access to the single image RAM, it can not
address more than one location in one clock time. This problem adds a
negative effect to the speedup. But in this paper, an efficient
segmentation method to transfer the data from image RAM to multi-port
RAMs that resides in the FPGA 1s used. To discuss this method in details,
it 1s necessary to compare the method with the traditional interleaving



method and it is necessary to depict the techniques which relate to
parallel logical design of the segmentation unit.

2.1.1 Reading the receptive field vectors

Although using serial digital signal processing is advisable at the upper
levels of the hierarchy, it might not be so adequate for early
processing[6]. Operating with images at the bottom level of the
processing hierarchy implies intensive memory accesses and poses
important constraints on the bandwidth of the communications between
memory and processor. Also, having a chip to sense the visual
information (zmager) and another one to process it (processor), requires
high-speed data conversions and transferences to achieve large frame
rates. As can be seen in Fig. 1, all small receptive field vectors related to
one large receptive field area are convolved 1n parallel, therefore the data
for all small receptive field vectors should be accessed in parallel.

*each large receptive field covers a part of input image which is
required to calculate the output of one simple cell in the last layer(see

Fig. 1(a)).

** In this work, and since each 4 PEs calculate 4 Manhattan
distances among the same small receptive field vector and 4 weight
vectors(features), therefore, it is required one storage element for
each 4 PEs.



The image processing algorithms of the CNN accesses the image data (as
usual) from external image RAM. The portion of this data that is to be
processed should be temporarily buffered into internal memories of the
chip. These buffers are

mapped on the FPGA RAM blocks which operate at the same clock
frequency that the FPGA elements operate.

Before discussing the proposed methods of transferring the windows
data from the image RAM to multi-port BRAMs in FPGA, it is necessary
first to give some details about the parameters of the designed system that
is used as face recognizer. A resolution of 32x32 pixels is sufficient for
the task of face recognition, since a face is a primarily characterized by
the existence of eyes, nose and mouth together with their geometrical
relationship all of which can be recognized at low spatial resolution[7].
Receptive fields sizes are chosen as 5x5, with 4 overlapped pixels(each
field 1s overlapped over another by four pixels in both horizontal and
vertical directions). The features in the hidden layers are organized as
(4x4)x4, with 2 overlapped pixels,(4x4)x4, with 3 overlapped
pixels,(4x4)x16, with 2 overlapped pixels, and (4x4)x16.To complete
calculations of one simple node of the last layer, it should store 100 of

5x5 small receptive fields of a 14x14 large receptive field as vectors (see
Fig. 2).

2.1.2 First method of segmentation

If the image data to be processed is stored in one single port RAM, then
there is no chance to deal with more than one location in a single clock
cycle. Also, accessing the consequent pixels from such RAM needs a
complex addressing scheme.

Therefore, the data needs to be grouped and re-arranged. So, each
acquired pixel should be written to one of the one port BRAMs(the
block RAM memory has two completely independent access ports,
labeled Port A and Port B). Therefore it can be splitted into two equal



block RAMs, the first is with port A and called BRAM-A, and the second
is with port B and called BRAM-B. Each part can be used as a single
BRAM of one port and called one port BRAM. Thus, an interleaving

addressing scheme in used to switch from one port BRAM to another
(see Fig. 3(a)).

For Spartan-3 FPGA chip that is used for the implementation, each
BRAM can be divided into two one port BRAMs of 8k bytes each.
Further, this one port BRAM is partitioned to 32 partitions, each of
length 32 bytes. Each partition is enough to store one small window(small
receptive field vector), consequently, each one port BRAM can store 32
vectors. For example, the first 25 pixels_vector occupies the first 25 of 8-
bits locations from the 1% partition of the first one_port BRAM (C0=25,
see the enlarged part of a one port BRAM in Fig.3(a)). The second 25
pixels vector occupies the 2" partition of the 1¥ one port BRAM, and
so on. For one large receptive field of 14x14 pixels, 100 segments are
required and should be equally distributed over all 3 BRAMs. The 1*
one_port BRAM holds 20 of small receptive field vectors (C1=20, refer
to Fig.3(a)). The 2™ one_port BRAM holds the second 20 segments, and
so on. The algorithm calculates the physical address of the pixel
image RAM in order to be buffered from the image RAM to the multi-
ports BRAMs that reside in the FPGA (here, 5 one port BRAMs are
used for 5 shared weights simple nodes to be processed in parallel each to
detect one of the 4 features for their corresponding small receptive fields
using 20 PEs) is summarized in Fig. 3(b).
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2.1.3 Second method of segmentation

It can be seen from the middle part of Fig.2, that four columns of two
adjacent small windows have the same pixel values. The second adjacent
window with respect to the first one has 3 common columns. The 3"
neighboring window with respect to the first one has 2 common columns,
and the 4™ neighborhood with respect to the first window has one
common column. That means, there is no need to re-read all pixels for
each window every time when its corresponding vector is to be accessed.

From the bottom part of Fig.2, it can be seen that, each pixel in the 3™
column of the first window acquired from the image RAM can
simultaneously be written to 5 one port BRAMs using the next clock
cycle. It can also be seen that the relation among adjacent vectors can be
used to form a parallel architecture capable for writing operations
parallelism. This architecture and its algorithm are depicted in Fig.4(a,b).
The SU is responsible for calculating the address of a pixel to be read
from the image RAM. At the same time it calculates where to write this
acquired pixel in the one port BRAM. In this method of segmentation,
the acquired pixel may be written to multiple storage elements
(one_port BRAMs) instead of one of the one port BRAMSs that is seen
in the first method of segmentation. This write operation depends on the
signals of port enable which changes according to the twisted ring
counter (see Fig.4) and to the pipelined addressing scheme used to
determine each one_port BRAM address.

3 Experimental Results

The proposed system is used as a real time face recognizer. The
hardware model of the CNN face recognizer has been designed using the
Xilinx Foundation environment [8]. The early level of the processing
hierarchy requires high-speed data transferences to meet speeding up
calculations which performed afterward. Two methods of transferring the



data from image RAM to multi-ports buffers represented by FPGA
BRAM ports were used. Once the data required to calculate one simple
cell in the last layer of the CNN transferred from image RAM to BRAM
ports buffers, then, a sequence of parallel processing operations begin
which project these data across the CNN simple and complex layers until
the output value of its final simple cell is calculated. The parallelism
reduces in subsequent manner. A comparison between the performances
of these two methods are shown in Fig.5.

One can notice that the time required for segmentation in the first
method of segmentation is approximately 2.77 times longer than that used
time required in the second method of segmentation. In other word, every
last layer simple cell output in the second segmentation method requires
1/2.77 of the time required by the first segmentation method (see the
signal: one simp2 end flag in Fig. 5). In consequence, the time required
to complete the calculations of 100 simple cells is highly reduced. This
performance was achieved due to the efficient parallel processing scheme
used in the second segmentation method to fill the BRAM ports in
comparison with the interleaved method used to fill the BRAM ports in
the 1* segmentation method (see BRAMx_py_out signals in Fig. 5).

In interleaved method of segmentation (Fig. 6(a)), one can see that all
BRAM ports addresses are common due to the changes of seg count 1
and seg_count 0 (c1 & c0).

The port_en signal is the output of the decoder whose input is connected
to seg count 2(c2) which counts up whenever cl reaches to its final
state.
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Every image value is written to one of the BRAM ports (see
signals (BRAMx_ py out)s in Fig. 6(a)). In contrast, in the second
segmentation method, every acquired image value can be written to all
BRAM ports in different locations simultaneously when the signal
port_en (connected to twisted ring counter) reaches to its maximum count
(see Fig. 6(b,c)). An internal counter is used to control the counting of the
twisted ring counter. This counter ensures that each partition of the
BRAM port is filled with the I,* J, small receptive field vector's
values. Reaching the maximum counting of this counter requires 45 clock
cycles (see also the bottom part of Fig. 2).

The reduction of segmentation time not only achieved from the parallel
writing operation to multiple ports in a single clock as was mentioned in
the last paragraph, but the number of image RAM access (R4=90,000)
which calculated by equation(2) when using the second segmentation
method is highly reduced in comparison with that calculated by
equation(1)(RA,=250,000) when using the 1* method. Equations (1) and
(2) are described as following:

RA=L.J.M.N.U.V, e (1)
RA=t.J,.2N.U.V, - 2)
Refer to Fig.4(b) and Fig.5(b) for description of equations parameters.

The implementation speed performances for CNN face recognizer
system using the both methods of segmentation used to buffer the data
from image RAM to FPGA BRAM ports are compared to the speed of
software

implementation of the same CNN running on a 2.4GHz Pentium 4,
GPP:General Purpose Processor, with 256 Mb RAM.

In Fig.7 and 8, one can see that for the 1% method of segmentation, the
overall time required for processing one complete image on Xilinx
Spartan-3 200,000-gates Platform FPGA (XC3S200 ) 50MHz is equal to
(6.36)ms, while the same model needs (280) ms when implemented
softwarely, resulting a speedup of (44). When using the architecture of
the second method of segmentation and with the same other CNN
components, the overall time required for processing one complete image
is reduced to (3.17)ms resulting a speedup of (88).



The dashed columns shown in Fig. 8 indicate that the speedup can be
further increased by a factor of 2.45 and 1.63 for first and second
segmentation methods respectively. This is achieved when the designed
systems are mapped onto an FPGA model that can operate on the
maximum allowable operating frequencies.

4 Conclusions

Based on that criterion of using serial digital signal processing is
advisable at the upper levels of the hierarchy and not be so adequate for
early processing, the coarse grained parallelism that is executed in the
bottom layer decreases gradually. In the last layer, only one receptive
field 1s applied to the processing element units that detect its feature.
Therefore, the time required to process an image is highly reduced. To
speed up calculations, an efficient interfacing and segmentation unit is
used to buffer the image data required for these parallel to sequential
calculations from the image RAM to multi-port FPGA RAM Blocks.

The system is tested by using the Optical Recognition Library(ORL)
face database for face recognition problem. A speed up of the calculations
that achieved for the parallel architecture when using the second method
of segmentation is duplicated as compared with the same architecture
when using the fist method. Also, it can be seen that despite of that the
maximum frequency achieved when using the second segmentation unit
is lower than that in the first one, but the speedup is still higher.
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Figure 6: Enlarged timing diagram of (a) first method of segmentation
method of segmentation (c) port_en signals representations

(b) second
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