Hardware Implementation of Backpropagation Neural Networks on
Field programmable Gate Array (FPGA)

Rafid Ahmed Khalil
rafidamori@yahoo.com
University of Mosul, College of Engineering, Mosul, Iraq

Abstract

In this paper, a design method of neural networks based on VHDL
hardware description language, and FPGA implementation is proposed. A
design of a general neuron for topologies using backpropagation
algorithm is described. The sigmoid nonlinear activation function is also
implemented. The neuron is then used in the design and implementation
of a neural network using Xilinx Spartan-3e FPGA. The simulation
results obtained with Xilinx ISE 8.21 software. The results are analyzed
in terms of operating frequency and chip utilization.

Key words : Artificial, Neural , Network, Backprobagation,

FPGA,VHDL.

Lalia, daa el il gl 48 glan dag i o L) cluill Latal) 40y 3di

d...\.\im\ééb

Jua gal) dala - digh) 418

LAY

ol Ll G g dpvianl) IS AN 305 5 anaail 48 Hha o) 81 5 oCand) 138 4

Gl gall 48 98 imn Ay y 5 e AW 5« (VHDL) oball Gl o g dal aladt uly
185 5 JSu olil 3l g5 ulaa Baa) g dniac A8 sealll Iy (FPGA) Llis daa juall
285 a5 NS BP el LAY A)) 550 Aaldll g bl 3arata dnaaal) 4500)
oSall L) dae)) sa A deadiiall 5 4 gaS o g3 Aplad yal) Jaedil) Al galdl LK)
QLS Can 5 4aly 48 g gl dppanl) AS0AN ALK dalall 4l apacal 28 25 SIS 22y | BP

8 O Xillinx® A4S y-ds dalall 4l Al s hidaie e (VHDL) ol
12 #il5) Xilinx ISE 8.2 Azsswe) Al 8 Cuy al aseaaill HLARY) 5 lSlal)
Al o)) ge Bl A g JBASYT 23 1 Hlaidea 5 e Lelilat o5

L Int{‘{gaﬁil‘é%%lzlg May 2007 Accepted 2 Sep. 2007
Artificial neural networks (ANN) have been used successfully in
pattern recognition problems, function approximation, control, etc. Their
processing capabilities are based on a parallel architecture [1]. There are
different kinds of electronic implementations of ANN : digital, analog,
hybrid, and each one has specific advantages and disadvantages
depending on the type and configuration of the network, training method
and application . For digital implementations of ANN there are different
alternatives : custom design, digital signal processors, programmable
logic. Among them, programmable logic offer low cost, powerful
software development tools and true parallel implementations [2].

Field programmable gate arrays (FPGA) are a family of
programmable logic devices based on an array of configurable logic
blocks (CLB), which give a great flexibility in the development of digital
ANNGs [3].

The backpropagation algorithm [1], is one of the most useful
algorithms of ANN training. In this paper, we present the neuron
implementation for the in topologies that are suitable for this algorithm.
The tanh sigmoid activation function is also implemented. The neuron is
then used in a multilayer neural network.

For the implementation, VHDL language was used [4]. VHDL (
Very high speed integrated circuit Hardware Description Language) is a
hardware description language which simplifies the development of
complex systems because it is possible to model and simulate a digital

system form a high level of abstraction and with important facilities for
modular design.

The purpose of this work is to suggest and analyze several neuron
implementations, show a way for the integration and control of the
neurons within a neural network, and describe a way to implement a
simple feedforward neural network trained by BP algorithm using
XC3S500E Xilinx FPGA.

2. Neuron Implementation

The common mathematical model of a neuron is shown in Fig. (1)

[1].

Fig. (1), Mathematical model of artificial neuron.

The neuron output can be written as:

1)

where p, are inputs, w ; are weight coefficients, f activation function,
and @« neuron output.
Two distinct neuron implementation were designed using 8-bit

and 12-bit binary MAC (multiply accumulate) circuits. The sigmoid
activation function is used for implemented neurons in hidden layer, and

linear activation function is used for output layer neuron. For all neurons
(8-bit and 12-bit), the product of signed input (4-bit / 8-bit) and signed
weight (4-bit) form a signed result (8-bit/ 12bit). These products value
are accumulated into activation state. The final output value is obtained
by applying the activation function. The weight coefficients are stored in
a ROM within neurons.

Referring to Fig. (2), the MAC unit which accepts a serial
processing of weights and parallel inputs pairs, each pair is multiplied
together and a running total is recorded. An index control module
controls the multiplexing order. Once all input pairs have been processed,
the final sum is passed through the activation function to produce the
neuron’s output. The main advantage of serial processing is the small
constant area required, regardless of topology, to implement one MAC
and some routing for one input and one weight contained in the weight
ROM module. The obvious disadvantage is the processing speed. If the
network involves a large number of inputs, serial processing will suffer
from slow processing.

index
control | SR IR _

ROM
weights

inputs

Fig. (2), Neuron structure—serial processing.

3. Sigmoid Activation Function Hardware Design

A very important part of neuron implementation is activation
function hardware design. One of the most frequently used activation
function in backpropagation neural networks applications is the
hyperbolic tangent (tanh) sigmoid function (refered to as "tansig" in
Matlab), and is given as:

This function is not suitable for direct digital implementation as it
consists of an infinite exponential series. Many implementations use a
lookup table for approximation. However the amount of hardware
required for these lookup tables can be quite large especially if one
required a reasonable approximation [5,6]. A simple second order
nonlinear function exists which can be used as an approximation to a
sigmoid function [7]. This nonlinear function can be implemented
directly using digital techniques. The following equation is a second
order nonlinear function which has a tanh-like transition between the
upper and lower saturation regions :

1 for L<n

f(n)=<f'(n) for =L <n<L i (
-1 for n<-L

3)

where L depends on the level of saturation of the function and £ '(n) is
defined by

n(f—6n) for 0<n<L

f(n)z{n(ﬁ+0n) o Lezeg e (4

where g and 6 are parameter for setting the slop and gain. Fig.(3)

shows the comparison between the sigmoid defined by equation (2) and
the hardware approximation defined by equations (3 and 4).

Real

= approximation

shbbonets

Ll

Fig.(3) Real tanh sigmoid activation function and hardware
approximation.

For an 8-bit neurons, figures 4 and 5 show the time diagrams for
implementing two neurons, one with approximated tanh sigmoid
activation function and the other with linear activation function. The RTL
(register transfer level) hardware circuits for implementing the two
neurons are shown in figures 6 and 7, leading to different hardware
complexity and different operating speeds.

Now:

1000 ns |n ns N 4nr ns R N ns 1
o | | | | | | | | | | | | | |

Rl gip (3 ER 4 3 h 2 hi

1+ g] 1 4 1 1

0 @ e300 H [i

20 i« n [[[

a0 S S | 4 a7 k14 5 i ar
Wi=7 I nonlinear artificial neuron I
w2 =-8
w3i=-7

Fig.(4) Time diagram of implementing an 8-bit artificial neuron with
approximated tanh sigmoid activation function.

Now:
1000 ns
G
B0
ip3B0
M el
@harol

R : ¥ %

Linear antificial
neuron

Fig.(5) Time diagram of implementing an 8-bit linear artificial
neuron.

-
b

+ /

T
.
£

BER Wl
V) . !
[|1
|I i |I i I|I
1 '] 1 2
1 Fi |I ! i ||

5y

Fig.(6) RTL hardware schematic circuit for implementing tanh
sigmoid artificial neuron.

Fig.(7) RTL hardware schematic circuit for implementing linear
artificial neuron.

4. comparison Results

Table (1) gives performance and resource use summary for the two
implemented 8-bit neurons. As it can be seen, the linear neuron require
very few hardware resource in comparison with tanh sigmoid nonlinear
neuron. The operation speed in all cases gives a good results and shows
the advantages of using FPGAs in neural realization.

Table (1) Comparative data for implemented 8-bit artificial neurons.

Neuron type tanh sigmoid Linear
Device utilization
No.of Slices (4656) 50 18
No. of register 14 7
No. of 4 input LUTs (9312) 94 30
No. of bonded IOBs (232) 21 21
No. of Multiplier (20) 3 2
No. of GCLKs (24) 1 1
Time sumary
Max path delay 24.8 nsec 12.T nsec
Max operating frequency 40.3 MHz 78.7 MHz

Target device : xc3s500e fg320 -4
Software version : ISE 8.2i

5. Neural Network Simulation and Implementation Results

The architecture of feedforward neural network used in this work 1s
3-3-1 (input, hidden, output) layers. It is shown in Fig.(8).

1,1} Lwwg2, 1}
A~ O
b{1} b{z}

Fig.(8) Two layer feedforward (BP) neural network architecture of
dimension

1

3-3-1 (referred to nntool matlab schematic notation).

The network is composed of three input , the hidden layer with three
sigmoid neurons , and the output layer with single linear neuron. All
neurons in the same layer are handled in parallelism. It fully uses the
parallel, quick characteristic of the FPGA.

Considering the tradeoff area and speed in the design of the chip,
the parallel inputs of every neuron from the previous layer are sent to the
multiplication and accumulated to the activation function. The principle
diagram of the top level and RTL level neural network design is shown
in Fig.(9 a ,b, and c¢).

¥ r_‘:]

s
Vi
—

A
IREY)
-

....... . : |

(c)

Fig.(9) (a) Top level diagram of implementing 3-3-1 feedforward
neural network, (b) RTL level circuit diagram of implementing
hidden layer, (c) RTL level circuit diagram of implementing output
layer.

Where p,,p,,p, 1sthe 4-bit input signals to hidden layer neurons. The 4-

bit nine weights coefficients are stored in a ROM within neurons. The
tanh sigmoid activation function of hidden neuron is implemented as
VHDL package code according to kwan approximation [7]. The 8-bit
outputs of hidden layer neurons ¢, ,a,,a, are applied as input to output
layer neuron. The output signal outr _rdy is applied as start signal to output
layer in _rdy . The cik signal drive both network layers. The three 4-bit

weights coefficients of output layer are also stored in a ROM within
output neuron . The overall network 12-bit output is a.

We adopt the ISE Xilinx foundation 8.21 software. The synthesized
result is as follows:

Dewvice ntilization swWwaosicy:

Selected Device @ SsS00sefgizZ0-—g

Numbher of ZSlices: 150 out of 3650 3%
Nummber of Slice Flip Flops: 22 out of 9312 0%
Number of 4 input LUTs: 310 out of 9312 3%
Number of IOs: 26

Number of bonded IOEBEs: 26 out of 232 11%
Number of MULTISX153IO=: 5 out of 20 25%
Number of GCLE=S: 1 out of 24 4%

[J

Timing Iurmmary:
Speed Grade: -4
Minimum period: 25.133ns [(Maximuwan Freguency: 39 .785MH=)

Minimum input arrival time before clock: 2.403ns
Maxirmuanm output recuired time after oclock: 14.248ns

To validate the performance of the neural network, we establish the test-
bench considering the actual situation of the neural network operation.
The test-bench adopting three type of input signal vectors, and the weight
coefficient of hidden and output layers are stored in ROMs. The
simulative results (time diagram) of the hidden layer and overall neural
network are shown in figures 10 and 11 respectively.

As a result of synthesis and implementation of multilayer feedforword
neural network on a Xilinx xc3s500 FPGA device. The device utilization
summary, and timing summary gives a good results and shows the
advantages of using FPGAs in neural realization.

Now:

1100 ns 0ng n Hore B0 800ns 1100
[O T Y I

| ol {] Y 7

B K a) £ 1 4 i 5

w3 a3n) 1 5 ! b

e 1 1] [[|

B st 9 }(9

® i) o3 G 3 {f %

Gl Y 1 < 0 Y 1 it £

W 3 adi) 2 80 7 i 5

Fig.(10) Time diagram for (3-3) single layer tanh sigmoid neural
network (assumed has identical performance to hidden layer).

2?00;{“3 ‘Uns 4Tu EEU‘ns 13‘20 1780ns m
TR || |3 | |X TI || ; || I
Bghepn 4 : \ 3 \ 4
IRy 5 | ; \ 7 \ ;
ey 8 |0 f 7 ¥ W | 0

ek 1] - l

Fig.(11) Time diagram for (3-3-1) feedforward BP neural network.

6. Conclusions

Construction solutions for implementation of neural networks using
FPGAs are described. The main purpose of this research was to design

and implement single neuron in the domain of speed and hardware
complexity, and to suggest a solution for connecting neurons into a
multilayer feedforward BP neural network. An important part of this
work was the hardware implementation for the approximation of sigmoid
activation function.

Since the more advanced families of FPGAs can contain more than
100,000 CLB (configurable logic block) [8], then it is clear that we can
implement a network with an interesting number of neurons working in
parallel in just a single chip. On the other hand, using hardware
description, such as VHDL, represent a very practical option when
dealing with complex systems. Finally, we can say the FPGAs constitute
a very powerful option for implementing ANNs since we can really
exploit their parallel processing capabilities.

References

1. M.Hagan , H . Demuth , M. Beele , " Neural Network Design" ,
University of Colorado Bookstore, 2002, ISBN : 0- 9717321- 0-8.

2. R. Omondi, C. Rajapakse,” FPGA Implementation of Neural
Networks", Springer U.S., 2006,ISBN 10-0-387-28485-0.

3. O. Maischberger ,v. Salapura , " A Fast FPGA Implementation of a
General Purpose Neuron ", Technical University , Institute of in
formatik , Austria , 2006.

4. D. L. Berry, "VHDL programming by examples", McGraw-Hill,
fourth edition, 2002.

5. Pavlitov K., Mancler O., " FPGA Implementation of Artificial
Neurons" , Electronics, No.9 September , 2004 , pp . 22-24 .

6. J. Blake , L. McDaid , " Using Xilinx FPGAs to Implement Neural
Networks and Fuzzy Systems" , Faculty of Eng . , University . of
Ulster , Magel college , Northland Rd . Derry , 2005.

7. Kwan , HK., " simple sigmoid . like activation function suitable
for digital hardware implementation" , Electronic Letters , V.28 ,
July , 1992 , pp. 1379 — 1380 .

8. Xilinx , XST User Guide , Xilinx Inc . 2003.

The work was carried out at the college of Engg. University of Mosul

