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Abstract

In this paper, steady two-dimensional natural convective heat
transfer in an inclined square porous cavity with two parallel walls kept at
constant different temperatures, while the other two parallel walls were
well insulated, has been studied numerically.  The governing equations
have been solved using finite difference method. Results have been
obtained for modified Rayleigh numbers between 0 and 300 and
inclination angle between 0° (heated from below) and 90° (heated from
side).  The rate of heat transfer was found a strong function of modified
Rayleigh number and inclination angle.  The maximum heat transfer was
occurred at about ( 50  ≤  ≤ 57  ) degrees of inclination.

Keywords:Natural Convective Heat Transfer, Porous Medium, Inclined
Enclosure.

دراسة عددیة لانتقال الحرارة بالحمل الطبیعي
مائلةفي طبقة مسامیة مربعة

میسر ادریس اسماعیلأمیر سلطان داؤد

جامعة الموصل/قسم الھندسة المیكانیكیة



الخلاصة

لانتقال الحرارة بالحمل الطبیعي المستقر ثنائي في ھذا البحث ، تم إجراء دراسة عددیة 
البعد في تجویف مسامي مربع الشكل لھ جداران متوازیان ذو درجات حرارة ثابتة ولكن مختلفة 

.والجداران المتوازیان الآخران معزولان

ان معدلات انتقال الحرارة . حصلت الحلول للمعادلات الحاكمة بطریقة الفروق المحددة
تتغیر ولزاویة میلان ) 300(الى ) 0( في المدى *Raمت لعدد رالي المطور المحسوبة قد

ان الدراسة الحالیة بینت ان ). مسخن من الاعلى) ( 90(الى ) مسخن من الاسفل()0(من  
كذلك بینت ان اقصى . معدل انتقال الحرارة ھو دالة قویة من عدد رالي المطور و زاویة المیلان

).50≥≥57(ة یحدث عند زوایا میلان حوالي انتقال للحرار

Nomenclature

Darcy number =(K/H2)=Da

Acceleration due to gravity, (m/s2)=g

Height of cavity, m=H

Permeability of porous medium, (m2)=K

Effective thermal conductivity of the porous medium,
(W/m.K)

=ke

Width of porous cavity, (m)=L

Nusselt number = Q / Qcond,0=Nu
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Pressure, ( Pa)=P

Heat flow rate, (W)=Q

Conduction heat flow rate, (W)=Qcon

d

Rayleigh number =(o gH3T /)=RaH

Modified Rayleigh number = RaH . Da=Ra*

Critical Rayleigh number for onset of convection=Rac

*

Temperature, (K)=T

Temperature difference = Tho – Tco, (K)=∆T

Fluid velocity in  x-direction, (m/s)=u

Fluid velocity in y-direction, (m/s)=v

Cartesian coordinates=x, y

Greek Symbols
 = Thermal diffusivity of porous medium, (m2/s)

 = Thermal coefficient of volumetric expansion, (K-1)

θ = Dimensionless temperature =(T-Tco)/(Tho-Tco)

 = Dynamic viscosity, (kg/m.s)

 = Kinematic viscosity of fluid, (m2/s)

 = Density, (kg/m3)

 = Inclination angle, (deg.)

Ψ = Stream function, (m2/s)



Subscript
c = Critical

co = Cold wall

e = Effective

ho = Hot wall

o = Reference condition

Superscript
ˆ = Dimensionless parameter

Introduction

Natural convection is one of the important modes of heat transfer.
This phenomenon has been observed in numerous environmental
circumstances. It occurs frequently as a result of density inversion caused
by either the thermal expansion of a fluid, or the concentration gradients
within a fluid system. As in fluid, Natural convection can also happen in
a porous medium saturated with a fluid [1]. Natural convection heat
transfer in porous enclosures commonly takes place in nature, and
engineering and technological applications.

Over the past years, more emphasis is put on natural convection in
porous media due to its growing importance in engineering and
geophysical areas. A wide verity of two-dimensional situations has been
studied. The convective flow of fluid through porous media heated from
below is of considerable interest in the study of the behavior of
geothermal systems and has been investigated extensively in the past.

Horizontal Cavity



Horton and Rogers in 1945 [2] made early theoretical study of
natural convection in a horizontal porous media.  In 1948, Lapwood (as
published in [3]) determined the criterion for stability of the conduction
state of such a layer and suggested in his linear analysis that convection
occurs at Rayleigh number above 42. Later on, Katto and Mosuoka in
1967 [3] gave experimental confirmation of the onset of free convection
satisfying agreement of the experimental results with the theory was
obtained previously.

Inclined Cavity

For situations involving inclined layers, available studies are
relatively limited. Bories and Combarnous [4] in 1973 carried out an
experimental and theoretical study of thermal convection in a sloping
porous layer. Similar experiments were conducted by Kaneko et al. in
1974 [1]. They found that inclination of the medium and certain
properties of the saturating fluid affect the mode and intensity of
convective motions.  Also, their experiments show that the critical
Rayleigh number for the onset of free convection is less than that
predicted by the linear theory (i.e. Ra*cos  = 42).  Oosthuizen and Paul
in 1984 [5] performed a numerical study to analyze two-dimensional
natural convective flow in a square cavity.  The cavity was half-filled
with a fluid and half-filled with a porous medium which saturated with
the same fluid, the fluid and porous medium layer being separated from
each other by an impermeable partition that was parallel to the two heated
walls and which offered no resistance to the heat transfer.  Their results
indicated that at all angles of inclination, the mean heat transfer rate
across the divided cavity with the porous medium was very much less
than that across an undivided fluid filled cavity, the relative decrease
being greatest at angles near that at which the maximum heat transfer rate
occurs and at the higher Rayleigh number considered.  Inaba et al. in
1988 [6] reported an experimental study of natural convection heat
transfer in an inclined rectangular cavity filled with liquid and spherical
particles, in which two opposing isothermal walls were kept at different
temperatures and other walls were thermally insulated.  They conclude



that the contribution of (d/H, ratio of spherical particle diameter to height
of the cavity) on Nu was remarked in a small inclination angle () and the
contribution of (L/H, ratio of width to height of the cavity) was
significant near  = 90°. Mbaye et al. in 1993 [7] performed both
analytical and numerical study for natural convection heat transfer in an
inclined porous layer bordered by wall with finite thickness and
conductivity. Their results obtained in terms of an overall Nusselt number
as a function of Rayleigh and Darcy number, angle of inclination of the
system, and thickness and conductivity of the bordering wall.

Vertical Cavity

Natural convection in a rectangular porous cavity heated from the
side is one of the classical problems of free convection in porous media
that have been extensively studied.  Chan et al. in 1970 [8] used the
Brinkman model to study natural convection in a rectangular cavity of
porous media filled with gas that was differentially heated in the
horizontal direction. Their numerical computations indicate that the
Darcy number dependence was unimportant for most situations. Burns et
al. in 1977 [9] examined analytically and numerically convection in a
vertical slot filled with porous insulation. The work includes wall
injection for both free and forced convection. Their results for no wall
injection were in good agreement with previous works. Bejan and Tien in
1978 [10] developed an approximate analytical method for the study of
natural convection in a porous layer. Their results show good agreement
with those of Burns et al. [9] and others. Bejan in 1983 [11] carried out a
numerical study of the effect of internal flow obstructions on heat transfer
through a two-dimensional porous layer heated from the side. He found
that the flow obstructions have a dominated effect on the heat transfer
rate.

In addition to the above review of investigation on a rectangular
cavity, there are many studies that deal with other shape problems. There
exist a good review of studies under this subject presented by Cheng [12].



In this work, the heat transfer rate and mode of natural convection
were determined numerically for the system shown in Figure (1). The hot
and cold walls, at temperatures Tho and Tco, respectively, make an angle 
with the horizontal.  The other two walls are insulated. The square cavity
is fully filled with a porous material saturated with liquid.

Figure (1) Physical situation and coordinate.

Mathematical Model And Numerical Solution

It has been assumed that the porous matrix is rigid and that the fluid
and solid properties are constant except for the density of fluid change
with temperature which gives rise to the buoyancy forces, this being
treated using Boussinesq approach.  It has also been assumed that the
fluid and matrix are in thermal equilibrium and that Darcy’s law can
adequately describe the fluid motion.
The equation of continuity, momentum, and energy transport for two-
dimensional and steady state conditions can be expressed, respectively,
as:
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Further, the pressure terms appearing in equation (2) and (3) can
be eliminated through cross-differentiation.  By introducing the stream
function automatically satisfies equation (1), the governing equations
become:






















 


  sincos2

2

2

2

y
T

x
TgK

yx
………………….………………(5)






























2

2

2

2

y
T

x
T

y
T

xx
T

y e


…………………………………………….(6)

Finally, equation (5) and (6) are put in a non-dimensional form by
defining a new set of variables.
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All spatial dimensions are non-dimensionlized with respect to H.
The resulting equations for the stream function and temperature are:






















  sin

ˆ
cos

ˆ
*

ˆ
ˆ

ˆ
ˆ

2

2

2

2

yx
Ra

yx
……………………………………(7)

2

2

2

2

ˆˆˆˆ
ˆ

ˆˆ
ˆ

yxyxxy 


















 

…………………………………………………(8)



Where,
e

THKgDaRaRa



* is the modified Rayleigh number, and

2H
KDa  is the Darcy number.

The boundary conditions on temperature are of Dirichelt and
Neumann types and on velocity are of closed type, i.e.:

1 at 0ˆ y , for
A

x 1ˆ0 

………………………………..(9)
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……………………...(11)
0ˆ  on all solid boundaries

……...………….…………………(12)
To obtain numerical solutions of the complete governing equations

(7)
and (8), finite-differences were used. The base of this technique is to
approximate all the derivatives in the equation by means of their Taylor
series expansions.

The finite-difference approximation scheme used is every where
second-order.  A central-difference approximation is used for the interior
nodes while a one side-difference approximation is used for the boundary
nodes.  After substituting the above formulas of the finite-difference in
the non-dimensional governing equations and re-arranging them in a
manner that enable them to be handled by computer, a computer program
is written in the FORTRAN language. The iterative procedure for
temperature was repeated until the following condition was satisfied:

∑ |TNi,j - Ti,j| ≤ 10-4

Before starting the computational solution, the grid independence
of the results must be tested.  Thus, numerical experiments have been
carried out to solve a two-dimensional convection problem in which the
angle of inclination
 = 0°.  The Rayleigh number in this test is set to be 150, while the grid
size varies from 10x10 to 70 x 70. It is found that the change in the heat
flow rate for grid size of 60 x 60 and 70 x 70 is less than 0.5 percent.
Therefore, the number of grid that is adopted in the present study is 60 x



60.  The number of grid was selected as a compromise between accuracy
and speed of computation.

The values of average Nusselt number have been compared with
those of other investigators using the same boundary conditions to show
the validation of the present numerical results.  Figure (2) illustrate a
comparison between the present results and those of other authors for the
case of cavity heated from below, they show a good agreement.  On the
other hand, Table (1) shows the comparison of Nusselt number for a
cavity heated from the side. As a further check on the numerical results,
average Nusselt numbers at the hot and cold walls were compared, and
they differed by less than 0.6 % in all computer runs. The Nusselt
numbers to be presented are those for the hot wall.

Figure (2) Nusselt number vs. Rayleigh number for a horizontal
porous layer heated from below [12].
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* [8] [9] Tien [10] [11] [13] Work

50

10

0

2.1

3.54

2.2

3.6

2.12

3.25

1.897

3.433

2.22

3.472

2.034

3.472

Table (1) Nusselt number comparison for the case of the cavity heated
from the side.

Results And Discussion

This article present the results of the numerical solution of the
convective heat transfer in an inclined porous layer. The field and the
average Nusselt numbers are presented and discussed as they vary with
the investigation parameter (i.e. Rayleigh number 0 ≤ Ra ≤  300  and
inclination angle 0  ≤  ≤ 90 ). Most of the results are presented
graphically. Finally, curve fits of the results are presented.

Flow Results

The effect of Rayleigh number and inclination angle on the
temperature distribution and flow fields will be discussed.

As mentioned previously, the cases, which received considerable
attention, are enclosures heated from below ( = 0), and enclosures
heated from the side
( = 90).  The fundamental difference between those two configurations
is that in enclosures heated from the side convection is present as soon as
a very small T (i.e. small Ra*) imposed across the enclosure. By
contrast, in enclosures heated from below, the imposed T must exceed a
critical value (i.e. Rac*) before the first signs of fluid motion are detected.

For the case of  = 0°, the energy is transported from hot wall to
cold wall by pure conduction (i.e. Nu = 1) at Rayliegh number less than
its critical value. In the conduction regime, the isotherms are almost
parallel to isothermal walls.  The conduction mode of heat transfer
continues until a critical value of Rayleigh number is reached.

In this study, the critical value of Rayleigh number has been found
to be equal to 40.  This is in a good agreement with the value predicted
from the linear theory (Rac* =   42 )



convection begins because of the buoyancy effects.  Thus, the flow field
comprises a primary cell circulating around the entire enclosure with
clockwise (This is an arbitrary direction.  It may be counterclockwise),
Figure (3) and has a maximum value for the stream function (ψmax =
0.435).  The small value of ψmax characterizes a very weak convective
flow.  The isotherms deviate only slightly from those of the pure
Conduction state.  The extremum value of the stream function becomes
larger as Ra* increase, indicating a more effective motion.  In addition,
further increase in Ra* results in changing the direction of the isotherms
and change the flow pattern from unicellular to multicellular flow. Figure
(4) shows the streamlines at Ra* = 100 and  = 0°.   This flow exhibits
two counter-rotating cells, each covering half of the cavity.  Both
components have the same maximum magnitude (2.79), but are of
opposite sign indicating an opposite direction of flow.  It also indicates
the flow rising slightly in the middle, turning at the top of the cavity,
moving adjacent the cold wall, turning, and falling down the insulated
wall.  The number of cells are increased to three at Ra* = 200 and then
reduced to two at Ra* = 300 (see Figures (5) and (6)). The same
phenomenon has been noticed by Prasad and Kulacki [15].

(a)                                                          (b)

Figure (3) Isograms at Ra* = 40, and  = 0°: (a) stream function
contours;

(b) isotherms.



(a) (b)

Figure (4) Isograms at Ra* =100, and  = 0°: (a) stream function
contours;

(b) isotherms.

(a)                                                          (b)

Figure (5) Isograms at Ra* = 200, and  = 0°: (a) stream function
contours;

(b) isotherms.



(a)                                                          (b)

Figure (6) Isograms at Ra* = 300, and  = 0°: (a) stream function
contours;

(b) isotherms.

As the enclosure is inclined with respect to the horizontal line, the
convective mode of heat transfer emerge at value of the Rayleigh number
much lower than that of horizontal enclosures, similar to those enclosures
heated and cooled from vertical sides. This is clearly seen in Figure (7).
Based upon the results obtained in this study one can state a criterion for
the start of convective flow as:

  B
c ARa 

……………...........................................................….(13 )

Where:
 =  in radian
A = 1.30617
B = - 0.740221

For  10  ≤  ≤ 90 

Figure (7) Variation of critical Rayleigh number with the
inclination angle .
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Plots of representative isotherms and streamlines as calculated for
Ra* = 200, are presented in Figures (8) to (11) for different values of
inclination angle.  The flow is mainly single cell flow and the
multicellular flow dose not appears as  increased beyond 0º.

(a)                                                          (b)
Figure (8) Isograms at Ra*=200, and  = 10°: (a) stream function

contours;
(b) isotherms.

(a)                                                          (b)
Figure (9) Isograms at Ra* = 200, and  = 40°: (a) stream function

contours;
(b) isotherms.



(a) (b)
Figure (10) Isograms at Ra* = 200, and  = 60°: (a) stream

function contours;
(b) isotherms.

(a)                                                          (b)
Figure (11) Isograms at Ra* = 200, and  =8 0°: (a) stream

function contours;
(b) isotherms.

The maximum value of the stream function ψmax and the velocity profiles
at a position x=0.5 as a function of the inclination angle 
number Ra* are presented in Figures (12) and (13), respectively.
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Figure (12) Variation of ψmax with the inclination angle ( )for
different values of Rayleigh number (Ra*).

Figure (13) Velocity profiles (u) at vertical centerline (x = 0.5) for
different values of inclination angle () at Ra*=100.

The curves illustrate the fact that the convection becomes
vigorous as the orientation angle of the cavity is increased.  It is
observed from Figure (12) that the curves for ψmax reach a maximum
value when the angle of inclination in the range  (50° to 60°) from the
horizontal line, depending upon Rayleigh number.  From Figure (13) it
is seen that the velocity is maximum at a position   = 50° for
Ra*=100.

Heat Transfer

As mentioned above, heat transfer results are presented in term of
average hot wall Nusselt number (Nu).  Figure (14) show the variation of
Nusselt number versus Rayleigh number with different values of
inclination angle.  It is clear that Nu equal to one in the conduction
regime (i.e. at Ra*  Rac*).  The reason is that the viscous force is
greater than the buoyancy force therefore the heat is transported by
conduction as discussed previously.  It is also seen that for short range of
Rayleigh number after Rac*, the rate of increase in Nu against Ra* is
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relatively small.  Then, Nu increases rapidly as Ra* increases expressing
the existence and increase of convective heat transfer.

Figure (14) Nusselt number (Nu) vs. Rayleigh number (Ra*) for
different

inclination angles.

Figure (15) represent the relationship between the average Nusselt
number and inclination angle for Rayleigh numbers of Ra* = 100, 150,
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and 300, respectively. The inclination angle is seen to have a dominant
effect on the Nu for a given Ra*.  As shown, the value of Nu increases
with increasing  above 0° (heated from below) passes through a peak
and then begins to decrease.  A similar trend has been reported by Ozoe
et al. [16] in the case of inclined fluid cavities containing two opposite
isothermal surface maintained at different temperature. Also, a similar
behavior has been seen experimentally in porous medium by Inaba et al.
[6].  The value of  Nu reached the maximum is changed as
Ra* increases.  It falls in the range of inclination angle of 50  ≤  ≤
57 at Ra*=100 the value of max for which
Nu is maximum, is about 50 while max is approximately 53 for
Ra*=300.  This is in coincidence with the results obtained for the
maximum stream function.  It is also noticed that the effect of inclination
angle on Nusselt number is more pronounced as the Rayleigh numbers
increase.

Figure (15) Variation of Nusselt number vs. inclination angle for
different

values of Rayleigh number.

Correlation Equation
In prior sections, the dependency of Nusselt number on the

investigation parameters (i.e., Rayleigh number, and inclination angle)
has been illustrated.  Therefore, attempts have been made to correlate
Nusselt number with those parameters.  Those attempts were not
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successful because the obtained correlation was not suitable for precise
data description.  So that, correlation of Nusselt number with Rayleigh
number has been produced for each inclination angle as:

Nu = c (Ra*)d

……………………………….................................(14)

The coefficients of equation (14) for each inclination angle are
presented in table (2).

Cons
t.

Inclination Angle ()

0 10 20 30 40 50 60 70 80 90

c 0.07
2

0.15
9

0.16
4

0.16
1

0.15
7

0.14
8

0.14
0

0.13
1

0.12
4

0.12
0

d 0.74
1

0.63
7

0.65
7

0.67
7

0.69
5

0.76
9

0.72
1

0.72
8

0.72
8

0.71
6

Table (2) Constant coefficients of equation (14).

The above correlation is acceptable in the range of Rayleigh
number
(0 - 300), and inclination angle (0 - 90).  To ensure that these
approximation correlations are usable, the correlation coefficient R had
been obtained for each equation.  The minimum value of R was (0.94),
that means these approximate equations are good for predicting the
value of Nusselt number.  Figure (16) shows the results with curve fit
for some cases.
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Figure (16) Variation of Nusselt number vs. Rayleigh
number with curve fits for different values of inclination angle.

Conclusions

The problem of natural convection in a two-dimensional, inclined porous
layer with uniform temperature on two opposite walls while the other
walls are insulated has been studied numerically.  The main conclusions
of the present study are:

1. For cavities maintained in the horizontal position the critical
Rayleigh number for the onset of natural convection Rac* can be
predicted from the linear theory. As the angle of inclination 
increases beyond 0 the value of the value of Rac* decreases. Thus,
the value of Rac*, as a function of inclination angle , can be
calculated from equation (13).

2. The orientation of the cavity has, for a given Rayleigh number, a
large effect on the heat transfer rate.  The maximum heat transfer
occurs when the enclosure inclination between (50  ≤  ≤  57 ).  As
the Rayleigh number increase the angle at which maximum energy
transfer takes place max shifts towards higher values of  . Equation
(14) and table (2) can be used to calculate the rate of heat transfer as a
function of Ra*, .
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