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ABSTRACT  
 An identity verification and identification system based on a person's distinctive vocal characteristics is known 

as speaker recognition. This paper sheds light on the evolution of speaker recognition systems from the earliest days of 

computers to the most recent innovations. Voice represents the behavior biometric that communicates details about a 

person's features, ranging from the speaker's age, gender, and ethnicity. The field of speaker recognition focuses on 

identifying individuals by their voices. Even though speaker recognition has been the subject of research for the past 

eight decades. Applications such as the Internet of Things (IoT), smart homes, and smart gadgets have made their use 

fashionable in the modern era. The speaker recognition field is briefly discussed in this work with an outline of its 

modeling methodology and various feature extraction strategies across multiple languages. The aim of this speaker 

recognition literature is to advance academic knowledge of speaker recognition.  
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1. INTRODUCTION  

A person can be recognized or verified 

using speaker recognition (SR), a technique that 

analyzes a person's speech characteristics. 

Human vocal cords produce voice, which the 

auditory system hears. The source and 

destination of the voice are the foundation of 

speaker recognition technology. While other 

speaker recognition algorithms simulate the 

human auditory system to obtain features heard 

in the ears, some focus on the pitch and 

frequency of the voice. Text-dependent and text-

independent categories were used to classify the 

speaker identification based on whether they 

require reading a specific text to obtain voice 

information. Speaker recognition encompasses 

speaker identification and speaker 

verification[1].  

 

 

2. FIRST SPEAKER RECOGNITION 

SYSTEM 

Before a kidnapping and murder case in 

1932, no academic study on SR had been done. 

To satisfy the suspect, Bruno Hauptmann, more 

than two years later, Charles Lindbergh, the 

victim's parent, by chance overheard the voice of 

the criminal close to where he was instructed to 

lay the ransom[2]. The first study on the validity 

of eyewitness testimony was started by Frances 

McGehee as a result of this legal case [3]. The 

study of the SR system has been continued, with 

data from McGehee's earlier work[4], [5] serving 

as a foundation. 

The earliest reports of SR research date 

back to the 1960s. Using the spectrogram 

approach, Kersta [6] conducted the first study on 

speaker identification in 1962, and Li, et al. 

published the first study on speaker verification 

in 1966[7]. A spectrogram is a graphic 

representation of the size of the spectral 

properties that change over time, showing the 

relation between the frequency and the spoken 

signal energy related to time. Before that,  in 

1947, Bell laboratories' physicist wrote an article 

about voice identification [5]. The person's voice 

production system was modeled physically by 

Gunnar Fant in 1960 [8]. This approach offers 
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the conceptual basis for explaining the speech 

processing for speaker and speech recognition. 

Fig. 1 depicts the timeline of significant 

developments in speaker recognition that have 

had a high influence on the development of the 

speaker recognition domain. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

During the same period, innovations in 

the domain of computers were also made, which 

helped to solve numerous implementation issues 

with continuous and discrete words. The 

implementation of the FFT (Fast Fourier 

Transform)[9] was reported by Tukey and Cooly 

in 1965[10]; this paper presented a technique for 

frequency domain signal analysis in the 

computer. Tukey, Healy, and Bogert released a 

discus in 1963 titled "The Quefrency Analysis of 

the Time Series for Echos: Cepstrum, Pseudo-

Auto-Covariance, Cross-Cepstrum, and Saphe 

Cracking" on the topic of seismic signal 

echoes[11]. By considering the spectrum log 

magnitude, which represents the relation between 

frequency and time, it provided a way of sound 

detection. 

Michael Noll [12] first suggested using 

the cepstrum to ascertain the transmission pitch 

in 1969. Ronald Schafer joined the research, 

which resulted in the complex cepstrum, or the 

magnitude spectrum of the Fourier transform. To 

model speech using Noll's pitch detection 

technique, Schafer used cepstral analysis [13], 

[14]. Subsequently, speaker recognition systems 

extensively used the developed cepstral speech 

model. 

In 1974 [23]–[26], Atal proposed Linear 

Prediction (LP) dependent characteristics for 

Automatic speaker recognition (ASR), including 

the impulse response function, Linear prediction 

cepstral coefficients LPCC, and autocorrelation 

function [15]–[18]. The cepestral data  found and 

became the first important among all LP-based 

features, according to Atal's research [15]. The 

block diagram for the recognition regime is 

shown in Fig. 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Since 1980, many speaker recognition 

systems for the reliant mode have been made 

available. 

 

3. SPEAKER RECOGNITION TYPES: 

Speaker recognition is a difficult task 

since different speech signals are produced 

during training and testing sessions by various 

circumstances, such as voice changes brought on 

by aging, illness, speaking rates, etc. [19], as 

shown in Fig.3.  

There are several categories of speaker 

recognition, including: Identification, 

Verification, Segmontation, Clustering, 

Detection, and Diarization. [20], [21]. 

In addition, the speaker recognition that 

is classified into text-dependent and text-

independent can also be divided into closed and 

open set systems [22], [23]. 

The exact text is said in a text-

dependent system throughout both the stages of 

testing and training; however, in the text-

independent system, there is no restriction on the 

text that is uttered, which the speakers find more 

practical[23]–[25]. The text-dependent system 

needs a short time for the procedure of training 

Fig. 1 Major development in speaker 

recognition across time [9], [10]. 

Fig. 2 Block diagram for the recognition system 
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where it applies a certain set of input signals. In 

contrast, because the algorithm aims to identify 

the speaker by converting audio into distinctive 

without considering what is being spoken, the 

training stage of the text-independent system is 

more extended [26], [27]. Fig.3 shows the types 

of speaker recognition. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.1 Speaker Identification: 

In this type of recognition, the system 

uses the speech from unidentified speakers to 

identify which enrolled speaker most closely 

resembles the speech. This type of speaker 

identification algorithm selects the matching 

speaker from among the speakers who have 

signed up, and it is possible that the unknown 

person is different from those chosen by this kind 

[28]. Because of this, speaker identification is 

commonly joined with speaker verification in 

several systems [29]. 

 

3.2 Speaker Verification: 

The purpose of the speaker verification 

is to make sure that an input utterance matches 

the identity that has been asserted. Determine 

whether the unfamiliar voice is that of a 

particular reference speaker. Then, accept the 

intended person or reject the liar [30]-[32]. 

 

3.3 Speaker Detection: 

In speaker detection, the target person 

with the testing speeches is supplied to the 

system. Then the system will accurately label 

and discriminate the concerned person's talks  

[29], [34]. 

 

3.4 Speaker segmentation: 

In this type of recognition, many inputs 

with the multi-speaker is present to the system. 

Then the system locates the points when the 

speaker varies. When the speaker's information is 

ready, produce models for every speaker. On the 

other hand, the system is known as blind speaker 

recognition [31], [33]. 

 

3.5 Speaker clustering: 

 

The speaker clustering aim is to 

accurately group several talks offered to the 

system[31]. 

 

3.6 Speaker Diarization: 

In the case of speaker diarization, the 

stream is offered to the system. Then, the system 

must locate the speaker who is said at each 

duration of the stream. This aim can be 

represented by constructing the stream 

segmentation aim joined (followed) with  the 

clustering one. Then, if the information is ready 

for the system, the models will be assembled. 

Therefore, the task is known as model-based 

speaker recognition [31]. 

 

4. METHODS OF SPEAKER 

RECOGNITION 

In the past fifteen years, there have been 

substantial advancements in each recognition 

system component, including characteristic 

choice characteristics, categorization 

characteristics, modeling characteristics, and 

making decisions. The improvements in the 

different speaker recognition areas contributed to 

its transformation from a purely academic 

activity to a practical fact. 

 

4.1 Low and High Level 

Short-term (10-20ms) voice features are 

represented by the low level, which has been the 

favored feature for most SR employment. 

However, the low-level method eliminates other 

distinguishable details in a speaker's speech. 

Pitch is one example of a low-level characteristic 

(e.g., the duration of silence between uttered 

words). The high-level features carried valuable 

information[15]. Early studies attempted to take 

advantage of this, but their results were restricted 

successes. With the introduction of the cepstram, 

low-level analysis once again becomes the focus 

of research[34].  

 

4.2 Hidden Markov Model (HMM) 

The HMM method represents a 

significant way for vocal modeling for speaker 

Fig. 3 Types of speaker recognition. [24] ,[29] 
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systems [35]–[37]. The ability of this model to 

analyze speech phenomena and its accuracy in 

real-world speech recognition systems are the 

primary factors in its success. The HMM's 

convergent and dependable parameter training 

process is another key feature. The 

representation of spoken utterances is the 

sequence of nonstationary vectors of features. As 

a result, segmenting the speech sequence into 

stationary states is necessary to achieve statistical 

calculation of the sequence of speech.  

 

4.3 Vector Quantization (VQ) 

A data classification technique called 

Vector Quantization (VQ) was created in 

1979[38]. The notion of utilizing VQ in speaker 

recognition originates from its successful 

application in the recognition of hand-written 

digits[39]. The VQ technique process to organize 

the data coming from an accredited one or a 

fraud. By utilizing an optimized non-linear 

decision limiting, this method's capacity is of 

interest to reduce the rate of error of wrong 

rejection and wrong acceptance. 

 

4.4 Dynamic Temporal Warping (DTW) 

This approach is an automated speech 

recognition (ASR) technique based on template 

matching. This method matches the parameters 

of words against those of a single referenc 

template. Dynamic temporal warping (DTW) is 

used to adjust and deduce the similarity degree 

between the speaker role model and the sample 

sentence. Where this method takes a long time to 

process, and the system occupies a large 

memory[40].  

 

4.5 Deep Neural Network (DNN) 

The DNN model is a flexible network 

input layer.  Where the input layers are diverse, 

the DNN model can add other demand 

characteristics that may assist in identifying the 

performance of the issued users. Then the DNN 

model can solve the limitations of factorization 

of matrix due to the versatile network input 

layer[41- [43]. 

 

4.6 Time Delay Neural Network (TDNN) 

In voice recognition software, the 

acoustic model—which transforms the auditory 

signal into a phonetic representation—often 

employs the TDNN. The aim of the TDNN 

method is to categorize the patterns with shift-

invariance and condition of the model at each 

network by applying the design of a multilayer 

artificial neural network. [44]. 

 

4.7 Gaussian Mixture Model (GMM) 

Reynolds' doctoral research in 1992 

focused on using Gaussian mixture models to 

model voice features for SR.  His contributions 

helped SR adopt a new worldview[45], [46]. 

With a significant decrease in processing 

resources, the GMM performs as a preferable 

method.  The GMM alone represents a 

substantial advance in recognizing technology.  

However, there have been a number of 

improvements made over the straightforward 

multivariate Gaussian mixture models.  The 

Universal Background Model (UBM) was one of 

the most noteworthy improvements [46, 47].  In 

addition to modeling the voice of the person and 

estimating the probability that the person was the 

authenticated user, it was suggested to use a 

group of individuals who were not the 

authenticated user.  

This made this model able to apply 

likelihood ratios and the Bayesian theory. [48].  

For that specific system, the characteristics 

distribution of speaker-independent is 

represented by the GMM-UBM.  Therefore, it is 

more likely that a worker is certified if their test 

utterance closely resembles the authenticated 

training data.  

 

4.8 Discrete Wavelet Transform (DWT): 

DWT frequently outperforms Fourier 

Transform-based parameterizations because it 

accurately represents the signal in both the 

frequency and time frame domains[49]. Karl [50] 

explored the parametric of the Czech language 

with a classifying approach. He shows that the 

wavelet configuration gave a high identification 

rate and reduced training time. As a result, 

current research efforts concentrate on applying 

the Wavelet Transform to many aspects of 

autonomous speech processing. 

 

4.9 Continuous Wavelet Transform CWT 

A signal's wavelet decomposition is 

accomplished via the Continuous Wavelet 

Transform (CWT). Small oscillations known as 

wavelets are highly concentrated in the time 

range. The basis functions of the CWT are scaled 

and shifted variations of the time-localized 

origen wavelet (mother wavelet), while the FFT 

distributes a signal into sines and cosines of 

indefinite length.  In FFT, the time-localization 

information will be lost. The time-frequency 

description that was produced by the CWT 

provides superior time and frequency [51]. 

4.10 Neural Network Classifiers NNC 

The NNC contains cells that are 

arranged in layers. These layers transform the 
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vector of input to the output. Every unit receives 

an input processed with a particular operation, 

which is frequently nonlinear,  and then sends 

the results to the following layer [52]. 

 

4.11 Support Vector Machine (SVM) 

Support Vector Machine (SVM) 

represents a method that uses each phrase trained 

to the system and modeled. To identify the 

semantic description of the test input voice, each 

segment of the isolated word is compared with 

against these models [53]. 

 

5. FEATURE EXTRACTION 

TECHNIQUES: 

5.1 Mel Frequency Cepstral Coefficients 

(MFCC) 

Any machine learning method's 

performance is greatly affected by feature 

extraction and representation. The Mel Frequency 

Cepstrum Coefficient (MFCC), popular in many 

domains, was created to model the characteristics 

of audio signals. “The shape of the vocal tract 

manifests itself in the envelope of the short time 

power spectrum, and the job of MFCCs is to 

accurately represent this envelope.” [19], [54], 

[55]. 

 

5.2 Linear Predictive Coding (LPC) 

The approach of LPC, which is frequently 

employed in audio signal processing, is used to 

illustrate the envelope of the signal of a compressed 

digital voice signal.  Where the most popular 

technique for voice coding and speech synthesis is 

LPC[56] 

 

5.3 Linear Predictive Cepstral Coefficient 

(LPCC) 

Linear Predictive Cepstral coefficients are 

coefficients used in cepstral analysis and are 

produced from linear predictive coding. Because 

the LPCC approach provides a tract of the human 

vocal model, it is used to record emotional 

information [57]. However, the noise resistance of 

LPCC is low[58]. 

 

5.4 Perceptual Linear Predictive (PLP) 

An all-pole model used in Perceptual 

Linear Predictive approaches to the auditory 

spectrum of speech. This process uses a bank of 

bark filters.   The bark scale primarily captures the 

auditory system's subjective perception of loudness.  

It is well known that this approach performs 

calculations more slowly than MFCC[59]. 

 

5.5 Gammatone Frequency Cepstral 

Coefficients (GFCC) 

Based on the gammatone filter bank, 

which represents the basilar membrane as a 

collection of overlapping bandpass filters, where 

the gammatone frequency cepstral coefficients were 

developed [60]. The GFCCs are generated by using 

an array of Gammatone filters to separate the signal 

of input speech into the domain of time frequency, 

followed by an adown sampling operation along the 

time duration[61]. 

 

5.6 Cochlear Filter Cepstral Coefficients 

(CFCC) 

The Cochlear Filter Cepstral Coefficients 

(CFCC) are according to recently created audio 

transformation in addition to a collection of 

modules to replicate the cochlea's signal processing 

capabilities. To overcome the acoustic mismatch 

issue between the training and testing 

environments, the speaker recognition employment 

using the feature of CFCC. The CFCC features 

significantly outperform -PLP and MFCC under 

white noise[62]. 

 

5.7 Relative spectral processing [RASTA] 

The appropriate data is extracted from the 

audio signal using the RASTA approach. The 

work's primary objective is to make speech 

recognition systems more durable in environments 

with additive noise and real-time reverberation[63], 

[64].  The technique is frequently employed for 

input signals governed by external noise or speech 

with noise disturbance. To perform better, the 

RASTA must be paired with PLP[65]. 

 

5.8 Convolutional Block Attention Module 

(CBAM) 

The Convolutional Block Attention 

Module (CBAM) represents an attention module 

for convolutional neural networks. The CBAM is 

a compact, simple, and general model so that it 

can be incorporated with other model 

architectures, such as CNN and DNN models 

[66] . 

6.  SPEECH PROGRESSION THROUGH 

1960s TO 2000s 

The following is a summary of the areas in 

which automatic speaker identification 

technology has advanced during the last 50 

years: 

6.1 1960s and 1970s 
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The following summarizes the areas in 

which automatic speaker identification 

technology has advanced during the last 50 

years. Ten years after automatic speech 

recognition, in the 1960s, the first attempts were 

made at the recognition of the speaker by 

applying correlation and a bank of filters. 

Pruzansky at Bell Labs[37], [67] was one of the 

first to research on the subject. One of the most 

critical issues in speaker recognition is intra-

speaker variability of characteristics, which has 

been well studied[68]. 

Text-independent methods: By 

averaging over a sufficient amount of time using 

statistical factors, different features were 

extracted to obtain speaker characteristics 

independent of the phonological environment. 

These consist of the following: spectrum and 

fundamental frequency histograms[69], 

instantaneous spectra covariance matrix[70], 

averaged auto-correlation[71], and spectral of 

long-term [72]. Approaches of text-dependent: 

The process of text-dependent was examined 

because the text-independent method's 

performance was constrained[69]–[71]. 

Comparing two exact text sound utterances in the 

same pronunciation settings can be done 

precisely and reliably using time-domain 

approaches when there is sufficient time 

alignment. As a result, text-dependent techniques 

perform far better than text-independent 

techniques.   

Text-dependent approaches: Time-

domain and text-dependent methods were also 

examined because the text-independent method's 

performance was constrained[69]–[71]. 

Comparing two utterances of the same text in 

similar phonetic settings can be done precisely 

and reliably using time-domain approaches when 

there is sufficient time alignment. As a result, 

text-dependent techniques perform far better than 

text-independent techniques. 

6.2 1980s 

Collection of VQ, can be effectively 

created by a series of speaker's vectors of 

training of short–term merits [73]. HMM as a 

parametric model was studied. An ergonomic 

HMM was suggested by Pritz [74]. A single-state 

HMM, currently known as the Gaussian mixture 

model (GMM), was suggested by Rose et al. [75] 

as a reliable parametric model. 

6.3 1990s 

In the 1990s, the study of enhancing 

adaptability grew as a major area of interest. The 

resistance against utterance fluctuations was the 

main point of comparison between the 

continuous or discrete ergonic HMM-based 

method and the VQ method, as reported by 

Matsui et al  [76]. It was demonstrated that 

independent of the number of states, speaker 

recognition rates were highly associated with the 

overall number of states. Thus, GMM obtains 

nearly the same performance as the multiple-

state ergodic HMM since employing information 

about transitions between states is ineffective for 

text-independent speaker recognition. 

As an extension of speaker recognition 

technology, studies have emerged on extracting 

each person's speech intervals independently of 

conversation or meeting involving more than two 

individuals[77], [78]. Speaker recognition 

systems are becoming increasingly reliant on 

speaker segmentation and grouping approaches. 

6.4 2000s   

Features of High-Level, pronunciation, 

prosody, word idiolect, phone usage, and other 

high-level features have been effectively 

employed in text-independent speaker 

verification. Generally, high-level feature 

recognition algorithms use sound to generate a 

series of symbols, which are subsequently 

recognized based on their frequency and co-

occurrence[34], [79]- [81]. 

Pronunciation, word idiolect, phone usage, and 

other high-level features have been effectively 

employed in the verification of speaker for text-

independent. Generally, high-level feature 

recognition algorithms use sound to generate a 

series of symbols, which are subsequently 

recognized based on their frequency and co-

occurrence[34][79], [ 80]. 

A range of adaptations of the model and 

compensating strategies were studied for speaker 

recognition approaches based on GMM. Two 

methods for GMM mean super-vector classifiers 

were proposed by McLaren et al.[82]. An 

unsupervised model adaptation strategy based on 
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the posterior possibility that a test utterance 

corresponds to the model of the client was 

proposed by Petri et al. [83]- [85].  

Integration of audio and visual characteristics: 

Audios-visual speaker verification systems, 

which use voice and image data together, have 

uttered a lot of interest. Lib movement is 

extremely employed as visual information. 

Enhancing system dependability is the audio-

visual mix. Mixing two different information 

sources (audio-visual) able to be approached as a 

pattern classification problem or a classifier 

combination problem[86], [87], [88]. 

Adaptation of the model and 

compensating strategies were studied for GMM 

depending on techniques for speaker 

recognition[82].  An unsupervised model 

adaption strategy based on the target customer 

model was proposed by Peti et al. [89], [83].  

Features of Maximum likelihood Linear 

Recognition (MLLR) to improve the robustness 

of voice recognition, and supervised and 

unsupervised HMM adaptation have both made 

extensive use of MLLR [90]. Promising 

experimental results were reported by Stolke 

[90], who suggested employing the adaptation 

matrix of MLRR as the speaker features [92]. 

Table 1 Advancement of speaker recognition over the last decade

Year/Ref. Method Feature extraction No. of speaker Speaker language Accuracy 

2011-[93] GMM-UBM MFCC 100 Marathi 80% for noisy data 

2012-[94] VQ LPCC 20 China-Mandarin 94.67% 

2012-[95] DNN MFCC, LPC 
280/ Mel and 

Femel 
English 85% 

2013-[96] HMM MFCC 140 English 93% 

2014-[63] HMM/GMM RASTA-MFCC 
AURORA 

databases 
English Error rate:3%-1% 

2014-[97] CWT CFCC 5, 14, 21,23 English Error 6.25% 

2015-[98] DNN PLP 300 English 0.22% 

2017-[99] GMM MFCC 267 Arabic 86% 

2017[100] DNN MFCC 100 English 97.3% 

2018-[101] HMM-GMM MFCC 10 Arabic-Amazigh EER of 6% 

2019-[102] SVM MFCC-LPC 12 Kurdish EER of 6% 

2019-[103] TDNN MFCC, PLP 591 English EER OF 5.56 

2019-[104] DWT 
Fuzzy Logic and 

NN 
50 Arabic NNs are better 

2020-[105] NNC 
Far-Field Text-

Dependent 
340 Chinese, English 3.29% EER 

2020-[106] X-Vector MFCC 180 
VoxCeleb 

celebrities 
2.7 

2020-[107] DNN CBAM 1,000 
VoxCeleb 

celebrities 
EER 2.03% 

2020-[108] - Different methods 7365 
VoxCeleb diverse 

lang. 
- 

2021-[109] GMM GFCC 24 English 80% 

2022-[110] DNN CBAM Variable Different language 
EER 0.645 

 

2023-[111] NNC MFCC 100 English 89.23% 

2022-[47] 
GMM+Genetic 

selection 
MFCC 1160 

English-Short 

duration 
97.24 
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2022-[112] Cochlear MFCC ∆ and ∆∆ 40+40 

Short phrase of 

Malaysian 

&Bangladish 

noise-robust 

performance 

2023-[1123] X-Vector LPCC 1251 Chines 0.98% 

 

7. CONCLUSION 

Vocal recognition research becomes a 

significant academic research field in the middle 

of the twentieth century. The independent speaker 

recognition system was created by combining the 

concept of SR with the development of 

computers. 

The concept of SR technology based on 

computers was advanced in the early years of 

computing. The spectrogram represented the first 

significant development in computers based on 

SR.  

Many opinions, including modeling 

approaches and feature extraction techniques, 

have been covered in this work. It is clear that the 

MFCC frequently yields positive outcomes in 

some conditions and can be combined with other 

techniques to improve the performance of SR 

systems. The selection of the method depends on 

the type of problem. To use an appropriate 

method, the developer should consider numerous 

factors. However, the review found that the GMM 

method remains the best and most advanced 

approach for SR systems.  

Today, business initiatives in speaker 

biometrics are becoming prevalent worldwide. 

After so many years of study, speaker recognition 

is only just approaching complete practical 

reliability (2% EER). Therefore, biometric 

systems now require the development of new 

technologies due to their many applications, 

especially when the necessity for individual 

identity emerges.  
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 الملخص 
يعرف نظام التحقق من الهوية وتحديد الهوية بناء على الخصائص الصوتية المميزة للشخص باسم التعرف على المتحدث. تلقي هذه الورقة على  

ات  التعرف على المتحدثين من الايام الاولى لأجهزة الكمبيوترالى احدث الابتكارات. يمثل الصوت مقياس السلوك الحيوي الذي ينقل تفاصيل سمتطور انظمة  
دثين بشكل  الشخص, بدءا من عمر المتحدث والجنس والعرق. يركز مجال التعرف على المتحدث على تحديد الافراد من خلال اصواتهم. كان التعرف على التح

ما عصريا في العصر  كاف موضوعا للبحث على مدار العقود الثمانية الماضية, جعلت التطبيقات مثل انترنت الاشياء, والمنازل الذكية, والادوات الذكية استخدا
ا استخراج  واستراتيجيات  النمذجة  منهجية  تحديد  من خلال  العمل  هذا  في  المتحدث  التعرف على  مجال  سريعة على  نظرة عامة  نقدم  نحن  لميزات  الحديث. 

 .  المختلفة باستخدام مجموعة متنوعة من اللغات. الهدف من ادبيات التعرف على المتحدث هو تعزيز المعرفة الاكاديمية للتعرف على المتحدث

   

 الكلمات الداله 
 استخلاص الميزات ، MFCC ،GMM، البصمة تمييز التحدث, 
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