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Abstract
A simple analytic design procedure for bireciprocal lattice wave digital filters
(bireciprocal LWDFs) is presented with approximate linear phase. The design is started by
replacing the odd order all-pass filter branch in the bireciprocal LWDF with a pure delay,
leaving the other branch as an all-pass even function of z . Analytic design procedure is then
formulated. Several design examples using such procedure are given for verifications.

Keywords: Bireciprocal LWDFs, All-pass sections, Half-band filters, Approximate linear
phase.
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I. Introduction

A wave digital filter (WDF) is the digital counterpart of a corresponding analogue filter
in the analogue reference domain. This makes the design of WDFs be basically carried out in
the analogue domain using classical filter approximations followed by the application of
certain analogue to digital transformations rules [1].

Among all other types of recursive filters, wave digital filters are known to have many
advantageous properties. They have low coefficient sensitivity, good dynamic range, and
especially, good stability properties under finite-arithmetic conditions [1],[2]. Unfortunately,
suboptimal design method of those WDFs results in very high complexity implementations.
Particularly, favorable wave digital filters are the lattice wave digital filters (LWDFs) [2].
Using lattice WDFs, highly modular and parallel filter algorithms can be obtained. This makes
them suitable for VVLSI implementations as they have regular low complexity structures, low
coefficients sensitivity, and can yield optimal pipelining for bit-serial implementations of
maximally high-speeds [3],[4]. Some efficient pipelined WDFs are widely used in wideband
high-pass applications such as wireless codec design or ECG signal processing [5]. Some
others LWDFs guarantee that the optimum finite-wordlength solution can be found for both
fixed-point and multiplierless coefficient representations [6]. Wave digital realizations can
also be obtained from the specifications, through VHDL descriptions and then synthesized into
Xilinx FPGA implementations [7]. In addition to that, the LWDF is well suited for
microcontrollers without a hardware multiplier [8].

Among other LWDF applications, the high-speed integrated circuits and the multirate IF
filters for mobile radio using LWDF implementations in silicon may be highlighted [9],[10].
Recently, wavelet transform implementations and wavelet bases are obtained from
orthonormal nonseparable perfect reconstruction quadrature mirror filter (QMF) banks that are
realized with LWDFs [11]. More recently, LWDF are properly utilized in pulse shaping,
audio / image processing systems, digital camera and mobile phones [12], while, glass
breakage detectors are simply designed using LWDFs on MSP430 chip [13]. Gazsi in 1985
[14] reported the first design of LWDFs using some explicit formulas for the direct
computation of the adaptor coefficients starting from the poles of the transfer function of the
analogue filter predesigned by classical filter approximation techniques. Such design uses the
alternative pole technique for the realization of the WDF composed of two all-pass filter
sections in parallel. However, such LWDFs can only satisfy some magnitude requirements
without taking any phase requirement into considerations. Most attempts to design such
LWDFs satisfying both magnitude and phase requirements face the problem of no closed form
solutions existence. For those attempts, numerical optimization techniques must be adopted

[1].

The idea of LWDFs is then extended to the design of almost linear phase LWDFs by
replacing one of the two parallel all-pass sections by a pure delay [15]. Bireciprocal LWDF
structures are preferred over LWDF ones because of their less complexity and minimal time
delay. Nevertheless, their versions with approximate phase linearity still face the complexity
of the design techniques [16].

In this paper, a simple analytic design procedure for bireciprocal LWDFs with
approximate linear phase is presented. The procedure is based on the prescribed idea of
letting one of the two parallel all-pass filter sections be a pure delay to result in an almost
linear phase LWDFs. Section Il of this paper presents the basic ideas of LWDFs and
bireciprocal LWDFs. The bireciprocal LWDFs with almost linear phase are described in
section Ill. The design procedure is presented in section 1V. Section V contains several
design examples. Finally, section VI concludes this paper.
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[I. Lwdfs And Bireciprocal Lwdfs

An LWDF ig, as shown in Fig. 1, a two-branch structure where each branch realizes an
all-pass filter [14]-[16]. These all-pass filters can be realized in several ways. One approach
‘hat yields parallel and modular filter algorithms is to use cascaded first- and second-order
sections. The first- and second-order sections can be realized using symmetric two-port
adaptors [1].[15] (see Fig. 2). Two-port series or parallel adaptors using certain equivalence
rTansformations can easily replace these sections. The second-order sections can also be
ealized using three-port series or parallel adaptors [13]. Another approach is to realize the
all-pass filters using Richard’s structure [1], where a processing element can easily be formed
:0 accomplish a bit-serial low-power implementation with low-complexity.
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Fig.1 Lattice wave digital filter block diagram.
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Fig. 2 An 11 order lattice wave digital filter.
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Hz)= [Ho(z)+Hi2)] (0
where Ho(z) and H1(z) are all-pass filters. The overall frequency response can therefore, be

written as :
i

. I :
H(eJCDT) - [ eJ‘I’U (0T) i eJ‘I’l(‘“T) ] (2)

where @¢(0T) and ®(wT) are the phase responses of Hy(z) and H;(z), respectively. The
magnitude of the overall filter ig thus limited by
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[H{el“=)]< 1 (3)

The transfer function of a LWDF and its complementary transfer function are power
complementary, i.e.,

JH(e“T)[" 4 [He(e=T)] - 4)
where
1
Z
He(z)= [Ho(z) - Hi(z) | (3)

This means that, if H(z), for example, is a low-pass filter, then a high-pass filter Hc(z) can be
obtained by simply changing the sign of the all-pass filter Hi(z) in (1). It is known
that, an attenuation zero exists corresponding to an angle woT at which the magnitude function
reaches its maximum value. For LWDFs, this occurs when [15]

[ ()] ©6)

A transmission zero exists corresponding to an angle @ T at which the magnitude
function is zero,1.e. when

G )

At an attenuation zero, the phase responses of the branches must take the same value.
Hence, in the pass-band of the filter, the phase responses must be approximately equal , i.e.

Dy(oT) = Oy(oT) ®)
while, at a transmission zero, the difference in phase between the two branches must be
Oy(@T) - >(aT)=xnr €)

Thus, the difference in phase between the two branches must approximate £x in the
stop-band of the filter. To make sure that only one pass-band and one stop-band occur, the
orders of Hy(z) and H;(z) must differ by one [15],[16].

In terms of computational effort, bireciprocal LWDFs represent the most efficient family
of IIR filters and are therefore of great interest. It is therefore very important to design
linear-phase bireciprocal LWDFs to obtain efficient structures preserving the phase
linearity property. A bireciprocal (half-band) LWDF is a special case of LWDF. In this
case every other coefficient of the filter becomes (), which results in a reduced structure
such as the one shown in Fig. 3. Moreover, when the application is in a decimator or
interpolator by a factor of 2, the filter can run at the lower sampling rate [17]. The transfer
function of a bireciprocal LWDF can be written as

H(z)= 3 [ Ho(z) + 2" Hi(@) | (10)
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where the transfer function Hy(z%) corresponds to the lower branch in Fig. 3. The transfer
function of the filter and its complementary transfer function are power complementary.
Therefore, for bireciprocal LWDFs

‘Hf;E'EQT)|: ,_-._EH{:e"fwT'ﬂ_ ‘}|3: 1 (11)

which means that the pass-band and stop-band edges are related by ©.T + o, T =z with o,
and ®, being respectively, the pass-band and stop-band cutoff frequencies. The
consequence 1is that the pass-band ripple will be extremely small for practical requirements
on the stop-band attenuation. Thus the bireciprocal WDFs have the efficiency of an
FIR half-band filter in terms of reduced computational effort (compared to non half-
band counterparts), while preserving the main advantages of IIR filters over FIR, 1. e.,
sharp transitions for lower orders. Moreover, it is a well-known fact, that WDFs have very
low multiplier coefficients sensitivity. Thus it is possible to represent filter coefficients
utilizing only a few bits. This could allow for decreasing the size of applied multipliers or
even replacing them by shift and add operations. All algorithms, previously used to design
bireciprocal LWDFs utilize numerical optimization methods.
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Fig. 3 A 7th-order hireciprocal lattice wave digital filter.

III. Almost Linear Phase Bireciprocal Lwdfs

It 1s possible to obtain a bireciprocal LWDF with approximate linear phase by letting
one of the branches in Fig. 3 consist of a pure (2R-1)® order delay [4],[15] (see Fig.
4). The other branch Ho(z ) ( of even order 2N ) is a general all-pass function in z°,
which can be realized using cascaded first and second orders sections. The transfer
function of a linear phase bireciprocal LWDF ig

Hz) =3 [Hz ) +7] (12
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2N —jnw@T
Hy(e179T) = -*;Jn:c,ewn bpe (18)
- 21 —jiN—mwT
Zn=oeven Pn€ " y

The phase response of this all-pass branch can be reduced to

N e bR sinnaT
(I)o(mT)—Ztanl(v.:.lN —

19
Zn—o.even PN cosnwT b
or
" P (wT -
Z;:::E.#:f!n bn sin nwT= tan ( 0{2 )() E;I::’C‘-QFE:‘: b“- cos nwT
1e€.,
2 PolwT
Z2N o even bn [sin nwT—tan (#) cos noT | =0 (20)

According to (15) and (16), (20) can be formulated in the pass-band as follows:

- ) -{(2R+1)wT _
2 s even bn [ sin nwT—tan f cos noT | ==8,
for (0 <oT < w:1) 2D
and in the stop-band as follows:
N 8 _‘»2 R+ I}UJT_ i1}
ZiZoeven DN [sin nwTtan - cosnoT | ==4,

for (0. T < 0T < m) (22)
where § <« 1.

By selecting (N-+1) extremal points on the union of the pass-band and the stop-band
regions. Therefore, (21) and (22) are sampled in these frequency points, while proper
alternating +8 values are examined at these points. One can start with an initial point ©; T
> 0 and the other points in the pass-band and stop-band can then be distributed
equidistantly in the rest band. In matrix form, we can write the sampled version of (21)
and (22) as

AB=35 (23)
where A is an (N+1) x (N-+1) matrix given by

A=[aj] .i.j=12.3,...... (N+1) (24)

B is an (N+1) x 1 matrix, having only even order coefficients by's . since all other odd
coefficients are zeros. B can be written in a transposed form as

B'=[bs by by . . . bl (25)

and 8 an (N+1) x 1 matrix can be written in a transposed form as

g=[8 -6 & -8 . . . 8] (26)
with

o a —(2R+1)uy;T ,
aj;=sin 2(j— 1}w, T —tan T cos 2(j — 1), T (27)
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in the passband (0 < oT <o/T),1=1,2,3.,..., N2 (Neven) [ori=1,2,3, ..., (N+1)/2 (N
odd)]and j =1, 2, 3,....., N+1. and

2

ajj=sin 2(j — 1)w; T —tan ( ) cos 2(j — 1w, T (28)

in the stop-band (0T <oT <m), 1=(N/2)+ 1, (N2)+2, ..., N+l Neven) [ ori=
[(N+1)2] +1, [(N+1)2] +2,....N+1(Nodd)] and j=1,2 3...., N+1l. In this
analytic algorithm, 6 can be selected properly to solve

B=A"'3 (29)

Thus, the design algorithm of the linear-phase bireciprocal LWDF is reduced now to the
evaluation of the vector B' = [bo b2 by . . . bay] which represents all the by's even
coefficients that should appear in the all-pass function H, (z7) of (17), while the total
Hypr (z'l) is the one given in (12). Polynomial factorization can be used to expand Hy (2'2)
of (17) into a product of 2" order all-pass sections, while all the multiplier coefficients «;
of the corresponding 2" order adaptors in branch Hy(z?) can then be evaluated by
using the same methods

given in [18].

It should be noted, here, that to design the corresponding high-pass complement filter,
one can change the plus sign to minus in (12), i.e., change the adder m Fig. 4 to a
subtractor, to find the total high-pass function Hypr (z). It should also be noted that low-
pass LWDF can be transformed to a band-pass one Hppp (z'l) by setting each z in Hypp (27
1 equal to —z°.

V. Design Examples

Four different examples are illustrated in this section to examine the above design
procedure of approximately linear phase half-band bireciprocal LWDFs, using the
algorithm described m section IV. They are a 7" order LPF, another 7" order HPF, an 11"
order LPF, and another 11" order HPF. The design procedure is applied with 6 = 0.01. In
all these LWDFs, the upper all-pass branches in the bireciprocal LWDF of Fig. 4 will be
as follows: a 4™ order type (2N = 4), (i. e, R = 1 in the lower branch) for the 7" order
LPF, another 4™ order type (2N =4), (i. e., R = 1 in the lower branch) for the 7" order
HPF, a 6" order type (2N = 6).(i. e., R = 2 in the lower branch) for the 11" order LPF,
and another 6™ order type (2N = 6),(i. e., R = 2, in the lower branch) for the 11" order
HPF. The resulting Ho(z'z) and Hl(z'l) with the total low-pass or high-pass functions
(Hrpr(z") or Hypp(z")). those correspond the four examples are given in Table-1. The
magnitude and phase responses of all these bireciprocal LWDFs are shown in  Figs. 5(a
&b)-8a&h).
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Table-1 The resulting Hy(z™") and Hi(z™) with the total functions (Hipe(z™") or Hupr(z))
according to bireciprocal LWDF type.

Type of
approximately
linear phase| Ho(z?) Hi(z™") | Hepp(z!) or Hipr(z™})
bireciprocal
LWDF
7" order LPF| — 0.4608 + 0.3377 z - —0.2304 + 0.1689z 2 + 0.5000z
with  cutoff| +z ™ 7 P +0.5000z* + 0.1689 z° -
frequency 1-0.3377 z 2 — 0.4608 0.2304 7

05Ty 2+ 1+0.33772 - 0.4608 2
7" order HPF | — 0.4608 + 0.3377 z —0.2304 + 0.1689z2 * —0.5000 z 3
with  cutoff| +z ™ 73 +0.50002*-0.1689 2z 7 +
frequency 1+0.3377 =z <+ _ 02304z
(0.5T) 0.4608 z™* 1+0.3377 2z~ - 0.4608 2~

0.0021 —0.1151z % +
1" order| 0.0043 —0.2303 z  + 0.1969 z * + 0.5000z ~°+ 0.5000z"
LPF 03938z 4+2°¢ 640196927 -0.115127° +
with  cutoff| T + 03938 7z 2 —|z° 0.0021z
frequency 0.2303z 7 +0.0043 z 1 + 03938 z -~ — 0.2303z  +
(0.5T) 6 0.0043 z
0.0021-0.1151z 2+
11™m order| 0.0043 —0.2303 z % + 0.1969z * — 0.5000z ~+
HPF 03938z +z°¢ 0.5000z° — 0.1969z7 + 0.1151z”
with  cutoff| T + 03938 z 2 _|z° —0.0021z"
frequency 0.2303z * + 0.0043 z - 1 + 03938 z © — 0.2303z ' +
(0.5T) ? 0.0043 7
Vi. Conclusions

A simple design of almost linear phase bireciprocal LWDFs has been presented in
this paper. Linear phase responses can approximately be achieved for these structures by
replacing one of the all-pass branches of the original structures by a delay unit. Since there
exist no closed form solutions for the design of linear phase bireciprocal LWDFs,
therefore, numerical optimization algorithms have always been used.. A simple analytic
design procedure of almost linear phase LWDFs has been presented in this paper with
some examples.

It has been noticed that the magnitude and phase responses of the designed filters
give better representations of the desired ones as the order of the bireciprocal
LWDF increases (about 85% of the pass-band preserve the linear phase property for
filters with order 11). That means more implementation complexity is required for good
phase linearity approximations. In spite of that, a single chip implementation using bit-
serial, bit-parallel processing elements or FPGA structures may easily be achieved for
such bireciprocal LWDF. It is promising topics to use such halt-band orthonormal
structures in the wavelet transform implementations on a single FPGA chip or to use
them as wavelet bases with perfect reconstruction quadrature mirror filter (QMF) banks.
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