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Abstract
In the present work a formulation of the reinforced bars and prestressed tendons

embedded in the brick element is developed and used for the nonlinear analysis of
reinforced-prestressed concrete beams. The reinforcement and prestressing bars are
represented by an axial 3 nodded bar elements embedded into the 20 nodded
isoparametric brick concrete element. Perfect bond is assumed between concrete and
prestressing steel bars (or tendons) such that displacements and strains of the bars are
assumed to be compatible with those of the concrete element. To verify the applicability of
the model two prestressed beams are analyzed and the numerical results show a good
agreement with the experimental one.
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Introduction:
        The nonlinear analysis of reinforced or prestressed concrete structures requires an
efficient modeling that takes into account the stiffness  contribution of the steel bars and
prestressing tendons to the structural equilibrium equations. This contribution should not only
consider the prestressing forces carried out by the bars, but it should also include the tendon
stiffness.  The  first  formulation  of  the  embedded bar  to  model  the  reinforcement  bars  in  the
nonlinear  analysis  of  axisymmetric  concrete  structures  was  presented  by  Phillips  and
Zienkiewicz [1] in 1976. Krishnamoorthy and Panneerselvam [2] model the reinforcement
bar by embedded two nodes bar elements in the plane stress concrete elements that were used
in the nonlinear analysis of reinforced concrete framed structures. Elwi and Hurdy [3]
represented the reinforcing bars by using three nodes bar element embedded in plane stress
concrete elements.

Mahmood [4] developed an embedded bar model to idealize the steel bar having arbitrary
geometry and randomly located within the domain of the concrete shell element. The main
emphases of the present work is to develop a generalized model for the analysis of prestressed
concrete beams, using a three-dimensional brick elements with embedded-curved tendons placed at
any orientation and location within the solid brick element which enable  the modeling of prestressing
tendons at any eccentricity from the neutral  axis of the beam and at any orientation.

Finite Element Model:
      The following simplifying assumptions have been made in considering the prestressing effects:

There is a perfect bond between steel and concrete.
The time dependent losses of  prestressing forces such as losses due to creep and

      shrinkage of concrete are neglected.

The 20 nodded isoparamatric brick element is used to represent the concrete. The
stiffness matrix is derived based on the standard displacement function as follows[5]:
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where [B] is the strain-displacement matrix and J  is the determinant of Jacobian matrix.

Embedded Bar Formulation:
       The present formulation is based on full strain compatibility between steel and concrete by
assuming perfect bond between steel and concrete. To define the geometry of embedded bar, a three
nodded  bar  elements  are  used  with  known  global  nodal  coordinates  as  shown  in  Fig.  (1)  and  these
nodal coordinates can be written for node (i) of element (e) as:
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The interpolation function (Mi) for each node of the embedded bar can be derived by
using Lagrange interpolation [5]  as:

M1=0.5 r(r-1)

M2=1-r2              ……….(3)

M3=0.5 r(r+1)

Where r is a natural coordinate for the embedded bar element with values range from (-1) at
node 1 to (+1) at node 3 with node 2 falling at the center of the element.  These interpolation
functions can be used to evaluate the global coordinates at any point (p) along the bar as:
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For the same point (p) in the brick element domain with the known global coordinates
as determined in the previous equation, the isoparamatric inverse mapping is required to
define the natural coordinates (  ,  , ) of that  point within the brick element. The ordinary
mapping of any point (p) within the 20 nodded brick element having the natural coordinates

 ,  , )  may be written as:

20
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Where )( iN , )( iX  are the shape function and global coordinates (x,y,z) of the brick element
corresponding to node (i). The inverse mapping involves a system of nonlinear equations.
Elwi and Hurdy [3] adopted an iterative approach of inverse mapping for the plane stress
element and the same approach was used by Mahmood [4] in the formulation of embedded
bar in the general shell element. In the present work, the same procedure is generalized for
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Fig. (1) Representation of the embedded bar.
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the three dimensions brick element. The iterative approach is based on the fact that the
natural coordinates (  ,  , )  are the roots of the nonlinear system.
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And the roots (  ,  , ) must satisfy the condition 0),,(f .
Using Newton-Raphson iterative scheme, the solution after ( j+1) iterations may be written
as:

jj 1

……….(7)

Where:
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Where jJ represent the Jacobin matrix at the sampling point (p) along the embedded bar

having natural coordinates ),,( jjj at the end of jth  iteration. To start the iterations, initial
values of the natural coordinates ),,(  have to be guessed. Convergence is assumed to
occur when the difference in each of the three components ),,( between two
successive iterations is less than )710( . The contribution of the stiffness matrix of the
embedded bar e

K to that of the parent brick concrete element is calculated by:

vol
dBDeTB

e
K .][..][ ……….(9)

Where ][B  is the strain displacement matrix of order (3xm), m is the total degrees of
freedom of the brick element [equal to 60 for the 20 nodes brick element]. Integration of
equation (9) is carried out using 3 points Gauss quadrature rule having the natural coordinates

),,( which are determined using the inverse mapping corresponding to the global
coordinates (xp,yp,zp) as explain in equations (2-8).  The integral over the domain at each
Gauss point is evaluated as:

vol
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Where (Ae) is the cross sectional area of the embedded bar and |J|   is the determinate of
the Jacobin vector at the Gauss point of the embedded bar which is determined from the
relation:
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        Where eizeiyeix ,,  are the global coordinates of node i of the embedded bar. While the
determinate is determined as:
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At each Gauss point of the embedded bar the elasticity matrix in the local coordinates of the
bar element is defined as:
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De ………..(13)

Where Es is the elastic (or elasto-plastic) modulus of the steel bar as the case may be.
This matrix has to be transformed to the global coordinates by the relation:

eTDeT
eTDe .. ……….(14)

Where [Te]  is the transformation matrix defined as:
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In which e is the angle between the tangent of the bar (at the gauss point along the bar) and
either the global X or Y axis depending on the orientation of the bar as follows:
        When the bar falls in a plane parallel to the X-Z plane the angle evaluated as:

)()(1tan
r
x

r
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e ……….(16)

Otherwise if the bar falls in a plane parallel to the Y-Z plane the angle evaluated as:
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Components of the strain at any Gauss point of the embedded bar are determined as:
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        Where a  is the nodal displacement vector of the brick element. Similarly the
stresses at the same point are determined as:
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xz
z
x

……….(19)

         The strain )( r  and stress )( r  along the axis of the embedded bar at any Gauss point
when the bar falling in plane parallel to X-Z plane, are determined as:
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Otherwise, when the bar fall in plane parallel to Y-Z plane the strain and stress along
the bar axis at the Gauss points are:
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Equivalent Nodal Forces and Global Stiffness Matrix
       In the nonlinear analysis of reinforced or prestressed concrete structures, it is necessary
to calculate the equivalent nodal forces at the end of each iterative step. These forces are
determined from the stresses of concrete and prestressing steel by the following relations:

dddJc
TBcF .....
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}{ ……….(24)

dreAJTBeF ....
1

1
}{ ……….(25)

Where }{ cF  is the equivalent nodal forces that result from the concrete stresses c  and }{ eF

is the equivalent nodal forces that result from the stresses of prestressing tendon or steel bar .
Global  stiffness  matrix  is  the  sum  of  the  stiffness  contribution  of  concrete,  steel  and

prestressing tendons:
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eKsKcKK ……….(26)

Material Modelling:
Since nonlinear finite element analysis of reinforced concrete structure  is computationally

expensive, a simplified and efficient models are required to simulate the material behavior. However,
these models should adequately predict the overall behavior of the concrete members. Realistic
modeling of material behavior is very essential to predict the nonlinear response during any stage of
loading and the ultimate load as well.

Behaviour of Concrete in Compression:
The accuracy of predicting the nonlinear  behavior of reinforced concrete members depends

mainly on the adopted material models. In the present work, the behavior of concrete in compression
is simulated by an elasto-plastic response up to yield limit followed by a perfectly plastic response
terminated at the onset of crushing. The plasticity model is expressed in terms of the yield criterion,
hardening rule, flow rule and crushing condition. The yield function used in the present work is
based on the mean or normal stress invariant I1 and shear stress invariant J2, which are
proved to be adequate for most practical applications[6]. The adopted yield function that has
been widely used in the nonlinear analysis of reinforced concrete structures [7] can be
expressed as:

ƒ(I1, J2) = [ I1 + 3 J2 ]0.5 = o ……….(27)

Where  and are two material parameters and o is the effective stress. Based on the failure
envelope of plain concrete under biaxial compression obtained from the experimental results
of Kupfer et.al [8], the parameters  and  will take the values, 0.355 o  and 1.355
respectively . A value cfo 3.0   is used to defines the initial yield surface, which define the
limits of initiation of elasto-plastic behavior. To establish the stress-strain relation in the
plastic range, the normality of the plastic strain increment vector to the yield surface is
commonly used as a flow rule. The incremental plastic strain vector, that is normal to the yield
surface, can be expressed as:

}.{. ad
f

dpd ……….(28)

In which  is a proportional constant which determines the magnitude of the plastic strain
increment. The flow vector }{a is defined as the derivatives of the yield function  given in
Eq.(27) with respect to the stress components and is given by:
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The hardening rule is required to define the change of the loading surface during the plastic
deformation. An isotropic hardening rule has been adopted in the present study. The subsequent
loading functions may be expressed from Eq.(27) as:

ƒ( ) = C. I1 +[(C. I1)2 + 3  . J2 ]0.5 = o ……….(30)
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Fig. (2) Representation of concrete equivalent uniaxial stress-strain curve.
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In the present work, the equivalent uniaxial stress-strain relationship beyond the elastic limit
(when o exceeds cf3.0 ) which represents the work-hardening stage behavior, is represented
by a quarter circle which is shown in Fig(2). In this region the relation between the effective
stress o and plastic strain p may be written as [9]:
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p
cE

p
cE

cfo ……….(31)

Where Ec is the initial elastic modulus of concrete and cE
cf

op max,  , o  is the strain at

peak stress cf .  The hardening parameter is obtained by differentiating Eq.(31) with respect
to the plastic strain ( p) which result in:
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The crushing type of concrete fracture is a strain controlled  Phenomenon. In the present
work the same yield function has been used to define the limit of crushing condition by
expressing the yield function in terms of strain components instead of stress components as
follows [7]:

2
231 JI ……….(33)
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Fig. (3) Tension stiffening model for cracked concrete.

Where 1I , 2J  are the strain invariant and ( ) is the equivalent uniaxial strain. When the

equivalent uniaxial strains reach the crushing strain ( u ), that can be extrapolated from
uniaxial compression test, the concrete is assumed to crush and lose all its strength and
stiffness.

Behavior of Concrete in Tension:
        Prior to cracking, the behavior of concrete in tension is modeled as linear elastic
material. The adopted cracking behavior is described in terms of strain criterion. If the
maximum principal strain exceeds a limiting value  ( cr =ƒ t /Ec), a crack is assumed to develop in a
plane orthogonal to the axis of major principal tensile strain. A maximum of two orthogonal cracks
are allowed to form at each sampling point. The post cracking tension stiffening and shear
retention are also considered. The adopted concept of tension-stiffening is based on the fact
that the concrete between the cracks due to the bond action between the steel bar and the
surrounding concrete can carry tension stresses. In the present work an exponential function
[10] shown in Fig. (3) is used to simulate this effect as follows:

/exp crtf ……….(34)

Where:
tf  is the tensile strength of concrete.

cr  is the cracking strain= cEtf / .
   is the tensile strain normal to the plane of cracking.
    is the softening parameter, which depends on the fracture energy [10].

Experimental studies [6] has shown that a considerable amount of shear stress can be
transferred through the rough surface of the plane of the crack. In the present work, a reduced
shear modulus oG1   has been used to model the reduced shear modulus of the cracked
concrete.
Where oG   is the elastic shear modulus and 1  is a shear retention factor which range from
(0.0) to(1.0) and in the  present study the adopted value is taken equal to (0.5).
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Fig. (4) Stress-Strain curve for prestressing steel.
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Material Modeling of Prestressing Steel:

The shape of the stress-strain curve of prestressing steel differs from that of reinforcing
steel in that no definite yield plateau or point can be identified. In this work a multi-linear
curve  shown  in  fig.  (4)  has  been  used.  It  is  assumed  that  the  prestressing  steel  will  be  in  a
tension state only and thus the compression branch of the curve is not considered.

Numerical Examples:
i- Shaikh and Branson Prestressed Concrete Beam

The simply supported prestressed concrete beam tested by Shaikh and Branson [11]
was selected for the analysis using the developed computer program. This beam was loaded
by central point  load. The material properties are listed in table (1). The geometry and
loading conditions for this beam are shown in Fig. (5). Making advantage of symmetry, only
half of the beam is idealized by 14 brick elements as shown in Fig. (6). The prestressing steel
is represented by 7 embedded bars, one bar in each of the lower brick elements, located at its
real position. In Fig. (7) the predicted load deflection curve at midspan of the beam is compared with
the experimented one. The figure shows a good agreement with the test results.

Concrete Prestressing Steel
Young’s Modulus cE =31500.0MPa
Ult. Comp. Stress cf =45.0 MPa
Ult. Tens. Stress tf =4.3 MPa
Ult. Comp. Strain u =0.0035
Poisson’s Ratio  =0.18

Elastic Modulus psE =200000.0 MPa
Yield Stress pyf =1820.0 MPa
Ult. Stress puf =2100.0 MPa
Effective Prestressing Stress

op =1340.0 MPa
Area of  Prestressing Steel psA =71.3 mm2

Table (1): Material Properties of Shaikh and Branson Beam [11].
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Fig. (5) Geometry and loading condition for Shaikh and Branson beam[11].
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X

ii- Lin Continuous Prestressed Concrete Beam

Lin [12] tested a series of continuous prestressed concrete beams under static and repeated
loads up to failure. Beam (A) was selected to validate the correctness of the proposed formulation.
The geometry and loading conditions for this beam are shown in Fig. (8) while the material properties
are listed in table (2). Taking advantage of symmetry of the beam and loading, half of the beam
has been idealized by 14 brick elements. Figure (9) shows the idealization of the prestressing
steel as an embedded bar, while table (3) shows the cartesian coordinates of the nodes of the
embedded bar elements. The predicted midspan load-deflection curve due to the external applied
load is compared with the experimental results are shown in Fig. (10). The failure load obtained from
the analysis is equal to (167.1kN) accompanied by crushing of concrete near the central support. This
is in good agreement with the experimental ultimate load (155.8 kN) that reported in reference [12].
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Fig. (10) Load-Deflection Curve for Lin beam [12].

Concrete Prestressing Steel
Young’s Modulus cE =36500.0MPa
Ult. Comp. Stress cf =35.0 MPa
Ult. Tens. Stress tf =6.3 MPa
Ult. Comp. Strain u =0.003
Poisson’s Ratio  =0.18

Elastic Modulus psE =200000.0 MPa
Yield Stress pyf =1480.0 MPa
Ult. Stress puf =1600.0 MPa
Effective Prestressing Stress

op =827.0 MPa
Area of  Prestressing Steel psA =621.3 mm2

Z(mm)Y(mm)X(mm)Node
203.00101.50.01
202.00101.5100.02
201.10101.5200.03
191.90101.51125.04
182.90101.52050.05
173.80101.52975.06
164.70101.53900.07
158.80101.54500.08
153.00101.55100.09
178.00101.55571.010
203.00101.56042.011
225.00101.56456.512
247.00101.56871.013
269.00101.57285.514
291.00101.57700.015

Table (2): Material Properties of Lin Beam [12].

Table (3): Cartesian Coordinates of the Embedded Bar for Lin Beam.
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Conclusions:
       The paper presented a general formulation of the embedded bar in a brick concrete element to
facilitate a three dimensional analysis of prestressed concrete beams. The developed model is proved
to be suitable to predict the behavior of the prestressed concrete beams. Two test examples have been
chosen to demonstrate the applicability of the model for the nonlinear analysis of prestressed concrete
beams. The predicted results, in terms of load-deflection curves and failure load had shown a good
agreement with the experimental results.
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