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Abstract

In this paper, the design of new real time integer to integer lifting based
wavelet transform IWT architecture is focused. An efficient design
method is proposed to construct an integrated programmable VLSI
architecture that can operate as forward or backward IWT in pipeline
fashion. The layout VLSI integrated structure is simple, modular, and
cascadable for computation of wavelet transform based on 5/3
biorthogonal filters. The architecture is optimal with respect to both area
and time and independent of the size of the input signal without
n e c e s s i t a t e  t o  m e m o r y .

The lifting steps adapted to be causal and the proposed architecture is
suitable to be used in the real time processing applications. The critical
path of the architecture is equal to critical path of one lifting step. The
numerical precision has been established using simulink model.
Experimental tests have been made with 8-bit signed two's complement
integer numbers. Based on the experimental result observations,

the data path width of proposed architecture is fixed at 10 bits.
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1. Introduction

The lifting scheme is an elementary method to obtain truly loss-less
non-linear integer-to-integer wavelet transforms with following properties
(1) fast implementation because lifting principle based on the optimal
similarities between high and low pass filters, which in consequence
reduce the computation complexity (2) in-place calculation by regularly
replacing the original signal with its transform, an auxiliary memory can
be kept away and the hardware implementation can be compact (3) the
backward transform can be realized  using the inverse elementary
operations of the forward one, taken in reversed order[1], [2], [3], [4].

In lifting scheme it is possible to maintain integer data after filtering
operation if the input data are integer. This can be developed very simply
by achieving rounding in each lifting step. In consequence the linear
lifting steps are replaced by their non-linear approximation. The
reversible integer-to-integer wavelet transform is called IWT. It is
important to note that the filter coefficient not necessary to be integer for
IWT [1].

A lot of literatures have been published concerning traditional
convolution design for DWT implementations. The architecture can be
broadly classified in the range from SIMD arrays to folded architectures
such as systolic arrays and parallel filters. The folded architectures,
implement online versions of the recursive pyramid algorithm RPA [6].
These architectures support single chip implementations in VLSI and are
optimal with respect to both area and time under the word serial model
[7][8][9].

Recently most of the works are done on the newly proposed lifting
scheme. A numerous papers are published for efficient VLSI
architectures of 1-D and 2-D lifting
based DWT [10]-[15]. In [10] a lifting scheme base architecture is proposed that



perform the forward and inverse DWT for a set of filters anticipated in JPEG2000.
Efficient lifting scheme VLSI architecture is proposed in [11] by flipping
conventional lifting structures for improving and minimizing the critical
path and memory requirement. In [12], a systematic design method for
efficient pipeline VLSI architectures of lifting scheme is proposed, which
includes specific lifting factorization, dependence graph formation, and
systolic arrays mapping. A VLSI architecture is proposed in [13] for the
IWT implementation, capable of achieving very high frame rates with
moderate gate complexity. DSP-type architecture for IWT are presented
in [14] dealing with optimal factorization and finite precision effects.

Although the lifting scheme has been widely studied in the literature,
most of them consider non-causal systems where the whole signal is
b u f f e r e d .

In this paper, we address new real time integer to integer lifting based
wavelet transform IWT architecture. An efficient design method is
proposed to construct an integrated programmable VLSI architecture that
can be operating as forward or backward IWT.  The architecture is casual
and no memory is needed for buffering.

The paper is organized as follows. In Section 2, the theory of lifting
scheme factorization polyphase matrix is reviewed. The design issues of
real time forward and backward IWT are given in section 3.  In section 4
the fixed-point lifting structure with numerical precision analysis is
described. The design procedures for integrated VLSI architecture are
provided in section 5. Finally, in section 6, conclusions are drawn.

2. Lifting Scheme

The polyphase representation of a discrete-time FIR filter h[n] can be
decomposed in z-transform domain into two parallel filters as
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where He(z) encloses the even filter coefficients and Ho(z) encloses the
odd filter coefficients of the FIR filter H (z). The  z-transform of the
decomposed filters can be expressed as
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coefficients and h[2k+1] contains the odd coefficients.

The general block scheme of the DWT is analogous to classical
subband system as shown in figure 1. If the sets of filters {Ha(z), Ga(z)}
and {Hs(z), Gs(z)} represent analysis and synthesis lowpass and highpass
filters respectively. The corresponding polyphase matrices are defined as
[4]
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The forward DWT can be expressed in terms of polyphase matrix as
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and backward is represented as
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Figure 1. DWT filter bank scheme.

The Lazy wavelet transform split the input X(z) into even samples
Xe(z) and odd samples Xo(z), where z]k2[x)z(X

k

-k
e  stands for even

samples, and z]1k2[x)z(X
k

-k
o   stands for odd samples of the input X

(z).

The input can be recovered through inverse Lazy wavelet transform that
join the even samples Xe(z) and odd samples Xo(z) as
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For perfect reconstruction, I)z(P)z(P T
sa  where T is matrix transpose

operator and I is the 2 x 2 identity matrix.

It has been shown in [5] that for a given complementary pair of filters
{Ha(z), Ga(z)}, there are always exist Laurent polynomials Sai(z) and
Tai(z) for 1≤ i ≤q and a non-zero constant K, such that
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This means that the polyphase matrix Pa(z) can be factorized into finite
sequence of alternating upper and lower triangular matrices. This
factorization is not unique, several pairs of {Sai (z)} and {Tai (z)} filters
are allowable. However, all possible choices give the same result for
DWT realization. In practice the set { Sai (z), Tai (z)} of filter pairs are
usually of 1 to 3 taps FIR filters [1]. Computing with Sai (z) filter is called
primal lifting or simply lifting while computing with Tai (z) filter is



known as dual lifting. The forward and backward lifting schemes are
shown in figure 2.

Figure 2. Wavelets transform using lifting scheme.

3. Lifting Structure realization

The lifting scheme realizes analysis or synthesis filter bank as
factorized polyphase matrix which are convenient both for design and
implementation of wavelet transform. In the literature, lifting scheme
architectures have been proposed [2], especially in the very last years due
to increasing interest gathered by JPEG2000 deliver. The well known 5/3
bi-orthogonal is a default filter employed by JPEG2000 for lossless
transforms. The analysis biorthogonal 5/3 filters {Ha(z), Ga(z)} have the
following  coefficients[1]:

Lowpass Ha(z) = –1/8 z-2+ 1/4 z-1 + 3/4 + 1/4 z – 1/8 z2

Highpass Ga(z)= –1/2 z-2 + z-1 – 1/2
(7)

The polyphase matrix of above filters is

(8)
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A probable factorization of Pa (z) using two lifting steps is
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Where Sa1(z) = – 0.5 (1+ z –1) and Ta1(z) = 0.25 (1+ z). The lifting steps
lead to the lowpass output A(z) and highpass output D(z) of the filter
bank shown in figure1.

Define the even and odd samples as xe[k]=x[2k] and xo[k]=x[2k+1] then
above matrix can interpret in discrete time domain as ;

Predict p1: d [k] = x [2k-1] – 1/2 (x [2k] + x [2k-2])
(10)

Update u1: a [k] = x [2k]   + 1/4 ( d [k] + d [k+1] )
(11)

where 0 ≤ k ≤ N/2 for input stream data x of length N.

The given system is a multi-rate system; the input sampling rate is Fs

while the output sampling rate is half or Fs /2. It’s visible that each of the
lifting steps has alike computing outline, the disparity are in the values of
input samples and multiplier factors.  The determined lifting scheme
should be causal for real times processing applications. It’s obvious that
predict lifting is causal while update lifting is not causal. Usually this is
not really a problem. The processing operations can delayed to make the
system causal. In order that the result lifting scheme become adapted in
real time applications the computation process is delayed by one unit time
as:



d[k-1]= x[2k-3]-1/2(x[2k-2]+x[2k-4])
(12)

a [k-1] = x [2k-2]   + 1/4 ( d [k-1] + d [k] )
(13)

The resultant dependence graph (DG) can be drawn for the
corresponding lifting as shown in figure 3. It is important to note that d[k]
and a[k-1] occured in the same time slot. The corresponding signal flow
graph (SFG) of the real time forward lifting scheme wavelet transform is
depicted using DG as shown in figure 4.

Figure 3: Data dependence graph (DG)



Figure 4: The real time forward lifting scheme architecture.

The real time backward lifting scheme can be determined from forward
equations as

x[2k-2]= a[k-1]-1/4 (d[k-1]+d[k])
(14)

x[2k-3]= d[k-1]+1/2 (x[2k-2]+x[2k-4])
(15)

The above equations are projected to get the SFG of the real time
backward lifting for reconstructing the original signal as shown in figure
5.



Figure 5: The real time backward lifting scheme architecture.

4. Fixed-point Reversible Lifting Structure

The invertible transform means that the transform is calculated using
exact arithmetic. In practice finite-precision arithmetic is usually
employed, and such arithmetic is inherently inaccurate due to rounding
error. In this case the transforms are reversible (i.e. invertible in finite-
precision arithmetic). It is possible to create transforms that are not only
invertible, but reversible as well [15]. The reversible transform map
integers to integers, and approximate linear wavelet transforms. Although
reversible wavelet transforms map integers to integers, such transforms
are not fundamentally integer in nature. That is, these transforms are
based on arithmetic over the real numbers in conjunction with rounding
operations [16].

The 5/3, transforms are truly multiplierless (i.e., their underlying lifting
filters all have coefficients that are strictly powers of two). Evidently,
each of the resultant architecture in figures 4 and 5 has computation
complexity of 4 additions and 2 shifts. The total delay between the input
signal and reconstructed signal are three clocks or 3/Fs. The critical path



of each architecture is equal to the delay of the predict step plus the delay
of the update step. The critical path of each lifting step is given by

TL= 2 TA + TS

(16)

where TA is the latency of the adder and TS is the latency of the arithmetic
shifter.

The reversible implementation of the forward and backward operations
of equations (12), (13), (14), and (15) are approximated by nonlinear
operations which map integers to integers. The forward IWT equations
are put into practice as
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While the backward IWT equations are executed as
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Where the symbol  . means floor function. In this work all the arithmetic
operations considered are fixed-point arithmetic and operands are
represented as two's complement signed integer. Under these conditions



the arithmetic right shift (symbolized by ») of a number V by p bits is
equivalent to  p2V or floor function that results into largest integer not
larger than V/2p.

4.1 Numerical precision analysis

A comparison study has been implemented using Simulink of Matlab 7
to determine the number of bits required for satisfied fixed-point
implementations. The study started by examining the BIBO (Bounded
Input Bounded Output) gain of lifting implementation of the 5/3
biorthogonal filters. Considering the cascade equivalence relations
obtained by means of the interchanging between a filter and down
sampling facilities the way to compute the BIBO [2].  The equivalent
low-pass filter obtained after j stage of the basic filter bank structure is
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and the equivalent high-pass filter is









2j

0i

2
a

2
aaj )z(H)z(G)z(G

i1j

(22)

The BIBO analysis gain for lowpass and highpass output subbands at
stage j are given respectively by
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Where the haj[n] and gaj[n] are inverse z-transform of Haj(z) and Gaj(z)
respectively.

Using the above equations the estimated values of BLj and BHj up to five
levels of decompositions are shown in table 1. The bit-depth expansion is
defined as the number of extra bits required and known as base 2
logarithmic of BIBO gain. The bit-depth figures at each level are also
illustrated in table 1.

It is apparent from table 1 that the worst-case bit-depth expansion
intended for lifting implementation of the 5/3 biorthogonal filters is 2 bits
up to five level of decompositions.

Table 1: BIBO gains and bit-depth expansions

level j BLj BHj log2(BLj)-bit log2(BHj)-bit
1 1.5000 2.0000 0.5850 1.0000
2 1.6250 2.5000 0.7004 1.3219
3 1.6875 2.7500 0.7549 1.4594
4 1.6963 2.8047 0.7624 1.4878
5 1.7067 2.8198 0.7712 1.4956

The above computed values at different levels refer to filter bank or
lifting implementation wavelet transform using of 5/3 biorthogonal
filters. Now the case of the integer-to-integer mapping wavelet transform
IWT is taken into account for the purpose of hardware completion of the
proposed architecture. If the sample values of the original input signal are
b-bit two's complement integer numbers in the range

−2b−1 ≤  x[n] ≤   2b −1 −1
(25)

then the sample values range IWT lowpass and highpass subband outputs
at level j are also integer numbers bounded by
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Where  bounds the effect of the floor operations used in each lifting
step. It is noted in [2] that  has negligible impact on the number bits
required for representing the subband sample values. Consequently, if the
signal input samples are b-bit two's complement integer numbers, then
(b+2)-bit integers are sufficient to represent the reversibly transformed
output subbands up to five levels of decompositions.

4.2 Experimental Results

Four input test signals are used to extract the performance of the
proposed IWT architecture. The signals are shown in figure 6 and named
as blocks, bumps, quad-chirp, and white gaussian noise. The input
samples of each tested signal set apart as 8-bit signed two's complement
integers. All signals were 1024 samples long.

The SNR in decibels is used to measure the performance as
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Where x is the original input data represented as 8-bit signed two's
complement integers, xr is the reconstructed output data.



Figure 6. The tested signal.

The SNR values for input signals after five levels of forward and
backward IWT are given in table 2, 3, 4, and 5. The lossless transform is
happened for all input test signals at 10-bit data width, where infinity
(Inf.) SNR values are gained. Therefore the data path width of the
proposed architecture is fixed at 10-bit

Table 2: SNR values in dB for blocks signal.

Bit width j=1 j=2 j=3 j=4 j=5
8 23.12 19.13 16.37 14.61 13.66
9 Inf. Inf. Inf. Inf. Inf.

Table 3: SNR values in dB for bumps signal.

Bit width j=1 j=2 j=3 j=4 j=5
8 24.53 18.26 15.27 14.07 13.65
9 Inf. Inf. Inf. Inf. Inf.

Table 4: SNR values in dB for quad-chirp signal.



Bit width j=1 j=2 j=3 j=4 j=5
8 16.11 13.04 11.19 10.37 9.65
9 Inf. 47.07 35.58 31.10 27.58

Table 5: SNR values in dB for white gaussian noise
signal.

Bit width j=1 j=2 j=3 j=4 j=5
8 13.60 11.55 10.75 10.33 10.29
9 Inf. 28.05 26.88 26.74 26.44

5. Proposed VLSI Architecture

The predict and update lifting steps has a similar computing pattern.  It
is possible to design a single programmable process element (PE) with
control inputs such that the PE can operate as predicts or updates lifting
step. In order to configure the PE a two control inputs denoted as m
(shift) and s (add/subtract) are applied as
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Table 6 shows the setting used in the case of forward/backward predict
and update lifting steps.

Table 6: The setting of control signal s and m  for forward

and  backward lifting steps

Lifting
step

Forward
Predict

Forward
Update

Backward
Update

Backward
Predict



s 1 0 1 0
m 1 0 0 1

The detailed structural design of the lifting step PE is shown  in Figure
7. The one of the four categories of the forward predict, forward update,
backward update and backward predict can be implemented using the
given PE by selecting the corresponding control inputs m and s.

Figure 7: Programmable lifting step PE.

The programmable lifting step PE affixed regularity in overall system
design. Hence the implementation of the forward lifting IWT is
straightforward. On the other hand, a better performance can be achieved
by using pipeline structure as shown in figure 8. Adding two latches
between the PE0 and PE1 the principle of pipelining is attained. Now the
critical path is enhanced and equal to critical path of one PE.



Figure 8: Pipeline forward IWT

As mentioned before the backward transform can be realized using the
inverse elementary operations of the forward one, taken in reversed order.
Applying this idea and using the derived backward equations. The
projection of pipeline backward IWT is as shown figure 9.

Figure 9: Pipeline Backward IWT

5.1 Integrated architecture

It’s clear that the functional block diagrams of the proposed forward
and backward of IWT differ in the way the input data supplied to the
pipelined processing elements PE0 and PE1 see the bold boxes in figures 8



and 9. It is possible to build an integrated structure that can functions as
forward or backward IWT architecture by adding multiplexers with
control signal u. Such that if u=0 the integrated structure operates as
forward IWT architecture, otherwise it operates as backward IWT
architecture.

The block diagram of the programmed forward/backward IWT
architecture is shown in figure 9. In the forward mode u=0, the input
multiplexers select the input x to the architecture and the buffers
corresponded to ‘a’ and‘d’ outputs are actives. In the same time control
selections of PEs are set to m0=1, m1=1, s0=0 and s1=1. While in
backward mode u=1, m0=1, m1=0, s0=1 and s1=0, the input multiplexers
route the ‘a’ and ‘d’ to be the inputs to the architecture. In the same
moment the output multiplexer buffer is active to deliver the output xr.

Figure 10: The integrated architecture for forward and backward IWT.

6. Conclusion



In this paper, the design of a programmable modular VLSI integrated
architecture for computing 1D IWT is proposed. The proposed
architecture is simple and cascadeable for computation of multi-levels
decompositions and can be programmed to operate as 1D forward or
backward IWT.  The integrated architecture is independent of the size of
input signal therefore it is not including any memory and this is an
advantageous in VLSI design with respect to both area and time.

The precision data analysis is performed using simulink model in the
environment of Malab7. The data path of the architecture is selected as
10-bit for the integer input samples of 8-bit using two's complement
representations. The 10-bit is sufficient for lossless reversible transform
and up to five level of IWT.

The architecture is suitable to be used in the appliance of real time
processing systems. A better arrangement is attained by using pipeline
configuration which reduces the critical path of the architecture to critical
path of one lifting step and consequently increase the speed of processing.
With simple modifications the proposed architecture can be used as 2D
IWT.
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