Al-Damluji: Nonlinear Coupled Finite Element Analysis of A Dam-Reserviour Under -----

Nonlinear Coupled Finite Element Analysis of A Dam-Reserviour

Under Dynamic Loading
Dr. O. F. S. Al-Damluji Dr. A. Y. Th. Al-Sa’aty Dr. R. M. Al-Nu’ aimi

Assist. Prof. / Civil Engg., Dept. Prof./ Achreculter Dept. Assist. Prof./ of Civil Engg. Dept.,
University of Baghdad, Iraq. University of Mosul, Iraq. University of Dohuk, Iraq.
ABSTRACT

This research presents a nonlinear coupled analysis of a dam-reserviour problem with
aspects of class I coupling for fluid-structure interaction and class II coupling for soil-
pore fluid—structure interaction under earthquake excitations using finite element
method. The analysis involves the compressibility of water, the flexibility of the dam,
the earthquake excitation, the structural damping and the material nonlinearity on the
response.

An efficient computer program is developed for this analysis from the original
computer code named as MIXDYN. The new software for analyzing the coupled
behaviour is established using the pressure formulation for modelling of fluid and the u-
p formulation for modelling of soil-pore fluid.

Two differenent schemes for coupled field problems are implemented in the new
computer code using the staggered partitioned solution technique in terms of sequential
execution of single-field analyzers. Eight-nodded two-dimensional isoparametric
element is adopted for idealization each of soil, fluid and structure. The Drucker Prager
model is used to simulate the behavior of soil and concrete. Implicit-Implicit Newmark’s
scheme with corrector predictor algorithm is employed for time integration of the
equations of motion. The capability and the efficiency of the model are found to be very
useful.

Keywords: Coupled analysis, dam-reserviour, finite element method, fluid-structure
interaction, soil-pore-fluid interaction, pressure formulation, u-p

formulation.
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1. Introduction

The dynamic analysis of soil-fluid-structure interaction includes all aspects of both fluid
and solid mechanics. In fluid-phase, viscosity of the fluid, magnitude of the gradient of the
velocity field throughout the flow and whether the fluid is (compressible or incompressible),
depending on whether density variations are large or small, play a key role in choosing the
kind of formulation to be used. While in the solid-phase, the time scale and the solver
algorithm to be used depends on the loading rate and the permeability of the porous medium.
Traditionally, fluid problems can be classified into two categories: (i) non-flow problems,
such as impounded water in a reservoir, tank, etc.. and (ii) flow problems, such as free
surface flow, flow around an airfoil etc.... In this study, the former type of problems is
considered.

The second class of problems to be considered here lies between the undrained and
drained extremes where dynamic loading is applied and transient pore-fluid motion is
significant [26]. The undrained analysis is possible when relatively rapid loads are applied
and permeability is low, i.e., where the load rate is greater than the pore fluid diffusion rate.
Otherwise, drained analysis is possible for situations with a relatively slow loading and high
permeability. Consequently, the problem to be solved in this research being a triple
interaction: fluid-structure-soil pore fluid.

1.2 Fluid-Structure Interaction (Class I Coupling)

The dynamic interaction between an elastic structure and a fluid has been the subject of
intensive investigations, e.g. ([7], [13], [22], [23], and [25]). Many researchers have
attempted to derive variational functionals for different classes of fluid-structure interaction
problems, e.g. ([13], and [29]). Others have attempted to reduce the problem size in different
ways, such as boundary integral technique, Ritz and Eigen vectors along with a combination
of finite element and boundary element methods. Several finite element studies have
considered the gravity and free surface effects along with the fluid structure interaction, e.g.
([1], and [28]).

Out of all the works done in the area of developing a finite element method for fluid-
structure interaction problems, two approaches predominate. The first approach is the
displacement-based method where the displacements are the nodal variables in both the fluid
and the structure ([5], and [14]). However, this approach is not well suited for problems with
large fluid displacements and special care must be taken to prevent zero-energy rotational
modes from arising. The second approach is the potential-based method, where
displacements remain as nodal variables in the structure, but velocity potentials or pressures
are unknowns in the fluid ([6], [17] and [31]).

1.3 Soil-Pore Fluid-Structure Interaction (Class II Coupling)

Soils are multiphase materials exhibiting a strong mechanical coupling between the solid
skeleton and the fluid phase. This coupling can be particularly strong in the case of saturated
soils of low permeability and fast transient or dynamic loading, where pore pressure plays a
significant role. The first successful attempt to develop a model for solid skeleton-pore fluid
interaction was due to Biot [3, and 4] for linear elastic materials. This work was followed by
further development at Swansea University, where Zienkiewicz et al. ([33], [34], [35], [36])
extended the theory to non-linear materials and large deformation problems.

Pastor and Merodo [19] used finite element method in the frequency domain based on
displacements and pore pressures as main variables. Their formulation was limited for linear
models, with incompressible pore fluid and very small permeability. The results of quay wall
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analysis under dynamic loading show that incompressibility of pore fluid may result in
volumetric locking of the mesh with a severe loss of accuracy.

Nogami and Kazama [15] developed a three-dimensional thin layer element method for
dynamic soil-structure interaction analysis of axi-symmetric structures in submerged soil.
Their formulation was based on Biot’s wave equation. The results show that the submerged
condition affects the characteristics of the Rayleigh waves in soil, alters the soil-structure
interaction stresses if the permeability of the soil is relatively large and, to less extent, the
response of the structure.

Spyrakos and Xu [27] developed a seismic analysis of intake-outlet towers including soil-
structure-water interaction. Their formulation considers the effect of partial soil-foundation
separation and the hydrodynamic pressure of the water through added masses. The results
show that hydrodynamic effects are significant and cause an increase in deflections, moments
and shears and a decrease in foundation rotation.

Guan and Moore [9] performed a dynamic analysis in a frequency domain of reservoir-
dam systems resting on a multi-layered soil when subjected to El-Centro earthquake ground
motion (1940). The impounded fluid was assumed viscous and the dam was modelled using
the finite element method. The stiffness matrix of the layered soil was obtained by means of
the layer transfer matrix.

Zienkiewicz [30], and Park and Felippa [18] described extensively several kinds of
coupled problems and their numerical solution with some applications. It was found that the
non-linear soil response causes a pore pressure build up and failure of the actual structure.
Also, the resulting matrices after semi-discretization are found to be not symmetric and
therefore, stabilization at the differential equation level before attempting to implement a
partitioned solution procedure is necessary.

2. The Governing Equations of Fluid Dynamics
2.1 The Fluid Model

In the fluid-solid models, the following assumptions are made: (1) the fluid is linear,
compressible and inviscid, (2) the flow is considered irrotational, (3) there is no friction
between the fluid and solid (no boundary layer), (4) thermal effects are negligible and (5) the
solid may undergo plastic deformations.

The stress-strain relations for a linear, isotropic fluid require the definition of two constants
[32]. The first of these links the deviatoric stresses to the deviatoric strain rates:
‘Cij:Gij-Sij Gkk/3:2,u'(éij-81j Skk/3) .................................... (1)

where: 9;; = Kronecker’s delta,
(' = Dynamic viscosity,
Okk = O111 0221 033, and
Ey =&, T &yt &y
The second relation is that between the mean stress changes and the volumetric strain rates.
This defines the pressure as:
P:Gii/3:kékk -PO ........................................................ (2)

where: k = the volumetric viscosity.
P, = the initial hydrostatic pressure independent of the strain rate.
Moderate fluid motion can be considered linear and the constitutive law is given by:
v =P K 3)
where: ey = the volumetric strain,
P =the pressure above the hydrostatic value, and
K = the bulk modulus of the fluid.
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2.2 Mass Conservation

This is also known as the continuity condition. Using the concept of control volume, the
principle of conservation of mass in three dimensions is expressed as [8]:

Prt (), =0 =P+ V(Pri) e (4)
or

Opr/dt+ 8 (prig )/dx+ O (o Wy)/dy +0 (piiy)/0z =0

where: pr = the mass density, 1= i ux+j lly+lA< u,, 1, j, k = the unit vectors in x, y and
z directions, respectively, V = 1(8/8 X) + j(@/@y)+ k (0/0z), t =the time,and uy, U,
and u, = the velocity components (for the fluid) in x, y and z directions, respectively.

If the changes in the fluid density are small (i.e., p, is small), Equation (4) reduces to:

U= 6v=P/K e (5)

2.3 Momentum Conservation

The momentum equation for the fluid is expressed as [8]:

pr(D fli /Dt) = Giij TPEEi e (6)
where
Di,/Dt=,+ 0, 8, =, e 7)

For small motion, the term u,;;0; (as compared to U;) is negligible. If the stresses and

pressures are taken as the excess above the hydrostatic pressure, then the body forces can be
neglected. For small displacements, the constitutive law for stresses is defined as [8]:

o =-P(pp) 8 —1'[(2/3) 8ii€, - 28,1 (8)
in which, &; = (1;,+10,;)/2 and u' = the dynamic viscosity.

Substitution of Equations (7) and (8) in Equation (6) gives:

prii, = -Pii —WIRB)Y U - Uig ] 9)
and if the viscosity is neglected, one can get:
Pril,=-Pii (10)

For an incompressible flow, the volume change is zero (ey = 0). Therefore, Equation (5)
reduces to:

U= 00 (11)
and for u, , = 0. Equation (9) reduces to:
pru, = -P,; +},L' ulkk ........................................................ (12)

2.4 Governing Equation of Motion
Eliminating u from Equations (5) and (9) gives the following well-known wave Equation

[11]:
V2ip+ gV 2p=Pp/c? (Linearized-Navier-Stokes Equation) ... (13)
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where: &' =4p'/3 prc?, p' = the dynamic viscosity of fluid and ¢ = K/p.
For an inviscid fluid, Equation (13) reduces to:
V2P = P/ e, (14)

2.5 Boundary Condition

(i) At moving boundaries (at interface with solid) where the fluid has a normal acceleration,
u_, n being the direction of the unit normal to the boundary, the pressure gradient can be

expressed as:
OP/ON=-prl, (15)

At fixed boundaries; 0 P/on=0.

(ii) At a free surface with surface waves (considering only primary waves):

P=prgu, or OP/OYy=DP/g (16)
At a free surface without surface waves: P = 0.

(iii) At radiating boundaries, the condition for no reflection of pressure waves can be
expressed as:

P/ ON=- P /e e, (17)
where: n = the direction of the unit normal at the radiating boundary.

3. Fluid-Structure Interaction (Pressure Formulation)

The structure and fluid are together idealized as a two dimensional system subjected to
excitation both in the horizontal and vertical directions. The fluid domain is represented by 8
nodes finite elements with one degree of freedom per node. This degree of freedom is the
value of the pressure P at the nodes. At the free surface, the element has an extra translational
degree of freedom to accommodate the free surface motion. The equations of motion can be
expressed, after spatial discretization, by two sets of second order coupled differential
equations. The fluid can be modeled using either the displacement, or displacement potential,
or velocity potential, or pressure formulations. However, in this study only the pressure
formulation is used because it results in fewer unkowns. The coupled fluid-structure
equations can be expressed as:

Ml +Cu+Kiu=£f-Md +LP (18)

MfE+QfE+KfB=ff_prT(g+d) ................................... (19)

where:

M= [NipN,dQ e (20a)
Q

Ci=aM;+BKs..oooenvneeeneee...(Rayleigh Damping) (20b)

K=[BTDrBAQ e (20c)
Q

fi= [Nytdl+[NipbdQ+[B'D'de°d2 e (20d)
Tu Q Q

L={o,B'8N,dQ (20¢)
Q

M= [N, Vg NydD+ [NJ 1/ NydQ (209

I'F QF
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(Coi= [N, 1/ NydD e (20g)
'R

K= [(VNOT(VNDAQ e (20h)
QF

Wi=[NunNGdT (20i)
Il

4. Pore Fluid—Solid Interaction (u-p Formulation)

When the seepage velocity relative to the solid skeleton is small compared with the
motion of the solid skeleton or if the permeability is low, the relative acceleration of the fluid
with respect to the solid can be neglected. With this approximation (i.e., neglecting the w
term) and replacing the unknown w with the pressure P, the equilibrium equation of the fluid
can be rewritten as [20]:

W=—kVP+kpb—kpU (21)

which can be used to eliminate w from the continuity equation. Upon discretization, it is
possible to write:

U= Nu U (22)
P =N, P (23)
and using the standard Gelerkin method, the resulting equations can be expressed as:
Mii+Cu+Kiu=£f-Md+LP (24)
G P+KpP=f -LTu+Mii (25)
where:
=[NGPNLAQ (26a)
Q
Ci=aM;+BK.................. (Rayliegh Damping) ... (26b)
K= j B (D +028.Q8M)BAQ el (26¢)
fi= jN tdr+jN pbdQ+jB D'de”dQ (26d)
j a, BTIN,AQ e, (26¢)
=m1,1 QNodQ (261)
Q
K,= j (VN TK(VN)AQ (26g)
f, —jN Pdr+j(VN YokpebdQ (26h)
I'p
L'= (o, N,'SBAQ (26i)
Q
M= [(VN.) " kprNudQ e, (26))
Q

where: N, and N, are the shape functions used for pore pressure and solid skeleton,
respectively. o and B are Rayliegh damping constants, O = the domain, I = the boundary
surface, B = the strain displacement matrix and t = the surface traction. In this study, this
formulation is implemented and used in the computer program.
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5. Staggered Solution for Coupled—Field Problems

Many engineering problems are generally partitioned into well defined fields which are
distinct in behaviour, material model or solution technique. Each field may be coupled
(totally or partially) with other participating fields or with only few of them (at interfaces via
the contact boundaries only).

The concept of staggered solution can be organized in terms of sequential execution of
single-field analyzers. This leads in the nodal based implicit-explicit partitioning of time
stepping, to a complete solution of the explicit scheme independently of the implicit one and
then using the results to progress with the implicit partition. This approach offers several
advantages over the field elimination and simultaneous solution approaches [32]. Therefore
in this study, the staggered partitioned solution scheme as shown in Figure (1) is
implemented and used in the new computer code.

Read data Read time Read data
for field 1 integration data for field 2
\ 4
Evaluate the coefficient Evaluate the coefficient
matrices for field 1 matrices for field 2

¥

Predict the response of field 1

|

i 4
Evaluate the coupled force on field 1 due to field 2

y

Evaluate the response of field 1

v

Evaluate the coupled force on field 2due to field 1

v

Evaluate the response of field 2

Go to next

No

Apply convergence
criterion for both fields

Go to
next time
step

Figure (1): Staggered partitioned solution scheme
for coupled field problem.
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5.1 Solution Procedure for Class I and Class II Couplings
Pressure Formulation U-P Formulation
The coupled fluid-structure equations are expressed as: The coupled fluid-structure equations are expressed as:
M U+C U+Ku=£-Md +LP M U+C U+Ku=£-Md +LP
M Prce Pekep=f —peL(U+d) ¢ Prxop=f -L'u+Mi
The solution algorithm of each independent field is carried out as follows:
(i) for time step (n+1), set the iteration ounter, i =1. (i) for time step (n+1), set the iteration ounter, i =1.
(ii) predict the response of field s (for solid skeleton)  and f (for |(ii) predict the response of field s (for solid skeleton) and f (for
fluid). fluid).
WO ® a® —y®
Uni~ Ynd Uni = Y
a® —q® a® —q®
Ui~ Y Uni = Y
i® — g0 g 2 i@ 0 = 2
Upiy = (Uphy Uy ) PAL Upip = Uy -Upyg )/ PAL
) (P) M_
BnJrl BnJrl P n
- (1) . (P) ( ) 1) _
Po=Pan =( Pn+l -Bu)/At=0
( ) M p
n+1 - (BnJrl EonV pat’

(iii) evaluate the effective stiffness matrix for field f. If it remains
constant, then it will be calculated only once at the beginning
of the solution.

(Ke*)'ni1 = My/ BAE +yCr / BAt + (K)'nn

(iii) evaluate the effective stiffness matrix for field f. If it
remains constant, then it will be calculated only once at
the beginning of the solution.

(K*)Y'ne1 = Cr/At+ 0 (Ko)'ne

(iv) evaluate the residual force for the first set of equations.

o - P IS B
B = (Bt + (EYar-M L —Coul -Koul

(iv) evaluate the residual force for the first set of equations.

i i TS P RCT B i
E*) ne1= (£)nr1 + (£) ' MSHnJrl QSHnJrl &HHJA

(v) update the effective stiffness matrix for field s if required.
(Ks*)lml =M,/ BAtz +7Cs/ BAL + (&)lml

(v) update the effective stiffness matrix for field s if required.
(Ks*)'1 = Mo/ BAE +yCJ AL+ (K)'nis

(vi) solve;  (Ks®)'ni1Au' = (£%)'se1
(vii) update the displacement, acceleration and velocity vectors for
field s.
(1+1) _ (i) i
ntl — Ypyp TAY
_gjll) =( u(‘”) - liy1)/ PAL
(1+l) _ - (i+1)
Unir = E s AtYunJrl

(vi) solve;  (Ks*)'wi1 Au'= (£%)'nis
(vii) update the displacement, acceleration and velocity vectors
for field s.
(1+1) _ (i) i
n+l — Ypyp TAY
i+l i+l
—51 1) =( HEHI) - flae1)/ PAE
(1+l) _ - (i+1)
Unt E 1+Atyun+l

(viii) use the update response of field s, to evaluate the coupled
force, (fi)' of field f and finally evaluate:

(viii) use the update response of field s, to evaluate the coupled
force, (fi)'; of field fand finally evaluate:

—n+l

and/or [|ag [/ PO

'l || < tolerance; go to step (iv) otherwise go

to next time step.

i 1 1 b (1) 1
(91 = (D + (B~ My BL L —0PE K PL | 9= (0 (- 0Py - K
(ix) solve; (K¢*)'wi1 AP = (f*)nit (ix) solve; (K/)i AP' = (f*),
(x) update the response of field f. (x) update the response of field f.
Bgill) B(l) + AP Bgill) P(l) + AP
(1+1) (>i+1) i1 (i+D)
=(P PHH)/BAt P, an+6(B a1 B
: (1+1) iy - (i+1) (1+1) Gt
Pon 7Pn+1+At“{Pn+l BT 7(P -RyAL=P
(xi) apply covergence criteria. (xi) apply covergence criteria
|| Au' ||/|| u(Hl) || < tolerance

" Au' "/" un+1 || < tolerance

and/ or || Ap' ||/|| ( + D || < tolerance; go to step (iv)

otherwise go to next time step.

where :

|| Au' || is the norm of incremental u in ith iteration. ; || un +1 || is the norm of current total u.

|| AP || is the norm of incremental P in ith iteration; || P(”l) || is the norm of current total P.
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6. Numerical Example: Dam-reserviour system

The Koyna concrete gravity dam-reservoir system is analyzed with all the aspects of fluid-
structure interaction (class I coupling) and soil-pore-fluid interaction (class II coupling). The
shape and dimensions of the dam-reservoir system are shown in Figure (2). The material
properties of the system are taken from Al-Nu' aimi [2] and listed in Table (1). The analysis
involves the compressibility of water, the flexibility of the dam, the structural damping, the
earthquake excitations and structural nonlinearity on the response. This problem is solved by
[20] as a fluid-structure interaction (i.e., with class I coupling) only.

O Fluid element

Z 107.00 m Concrete element
A O Soil element
81.45m 268 poyiyey 274
v 247 249 251 253 255 263 Number of nodes = 274
— 6 ® ¢ IR BRIRRICR Total number of elements =74
& 197 1‘79 . . . . . 225 Number of fluid elements =30
3 . . o« 1 o | 4 139 1 * 196 Number of concrete elements = 18
g 168 _ 152 @ ¢156 ¢ 1 167 Number of soil elements =26
S 139 3 . 1.1 19D 138 0.0
) .Um
g 86 ) 92 102 104 106 108 J09 X
= e g b’ S N - > h! - L4 by P > —
N
S a 9 ; 82
.g ¥ 43 49 57 St R 6
<
g 3Py D ] 4 ® 1 ] b @ (41 500m
“ '1////////// i 7////// I ////1 /5// ////1 /4// Wi, /////2 /1///// Wi 2/é//// i) 2/é//// //////2 '7
3 5 9 11 13 19
Rigid impervious boundary

Figure (2): Koyna dam-reservoir system (India).

Table (1): Dimensions and properties of Koyna dam-reservoir system (Al-Nu' aimi [2]).

Material and Property Value
1. Dam (concrete)
Height of dam above foundation (m). 107.00
Depth of reservoir (m). 81.45
Young’s modulus of concrete, E. (T/mz) 3164000

Poisson’s ratio of concrete, v, 0.20

Density of concrete, p. (T/n) 2.690
2. Soil (rock)

Young’s modulus of soil, E (T/m’) 1800000
Poisson’s ratio of soil, vy 0.20
Density of soil, p, (T/m’) 1.830

3. Fluid (water)
Compressibility of water, ¢ (m/sec) 1439.0
Density of water, p; (T/m’) 1.000
The ratio of fundamental periods of reservoir
to the dam:
vr = (T reservoir/ (Ty) dam 0.566
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6.1 Results and Disscussion
6.1.1 Effect of Water Compressibility

For this study, the rigid Koyna dam is subjected to a horizontal Heaviside unit base
excitation. The velocity of water is taken as a measure of water compressibility (K = ¢* py).
Figure (3) shows the pressure distribution for cases with incompressible and compressible
water. It is observed that as the velocity of water is increased from lc to 4c, the peak
hydrodynamic force does not change significantly. But, there is a shift in the occurrence of
the peak force. This implies that the compressibility of water has a significant effect on the
distribution of pressure on the rigid dam.

6.1.2 Effect of Dam Flexibility

Again, the rigid Koyna dam is subjected to a horizontal Heaviside unit base excitation.
The pressure distribution for several cases of dam-foundation flexibilities are shown in Figure
(4). For the case of dam on a flexible foundation, as the flexibility of the dam system
increases (by decreasing its modulus of elasticity), the hydrodynamic force or the pressure
distribution on the face of dam also increases. The maximum effect is obtained when both the
dam and the foundation are most flexible. Conversely, when the dam is rigid, foundation
flexibility is not so important.

The peak hydrodynamic force is given in Table (2). This table shows that as the flexibility
increases, the response also increases.

10 4 10 B o
HANN N Effect of dam flexibility
09 — \ © N Effect of water compressibility 09 \\\.\ Water compressibility ¢ = 1439 m/sec.
08 . Dam and foundation rigid 084\ ‘ ——  Flexible foundation-flexible dam
g \\ N —O— Velocity of water = Ic \\ —Q@— Rigid foundation-flexible dam
07 1 \\ = A Velocity of water = 4c 0.7 \\ ] —&— Flexible foundation-rigid dam
06 ! f- Incompressible water 06 - \ 3 % R’g’d«/()“”'d”“()”"’g‘d dam
N\, ——— Hydrostatic pressure N ——~ Hdrostatic pressure
E 05 \ HATOSHAtC pres S \ [} Incompressible water- rigid dam
] =~
04 7 | 3 04 -
03 : 03
027 ‘: 02 -
0.1 !
i ; 01
00 L B B B R 00

00 02 04 06 08 10 12 14

Hydrodynamic/ Hydrostatic pressures ( Pél /Py) Hydrodynamic/ Hydrostatic pressures ( Pél /Py)

Figure (3): Effect of water compressibility
on hydrodynamic pressure distribution.

Figure (4): Effect of dam flexibility on hydrodynamic
pressure distribution.

Table (2): Effect of dam flexibility on hydrodynamic pressure distribution
due to Heaviside unit base excitation .

Response Fexible Foundation Rigid Foundation
Description E=1E E=1E| E=2E | E=4E | E=w
P"y/P, 1.360 - 0.505 0.500 | 0.395
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6.1.3 Effect of Earthquake Excitation

Three different earthquakes each with different ground motion characteristics are

considered as shown in Figures (5a-¢).

4 4
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Figure (5): Earthquakes (from Paul, [20]).
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The undamped response (0 % damping) of the crest displacement, the stress at the dam
heel and the hydrodynamic pressure at the base of the dam when subjected to both transverse
and vertical components of either the El-Centro or Koyna or San Fernando earthquakes,
simultaneously are shown in Figures (6), (7) and (8), respectively. It is noticed that the
response characteristics are very much dependent on the type of earthquake excitation. This is
because of the strong interaction between the impounded water and the foundation when the
vertical component of the earthquake is considered in comparison with that due to only the
transverse component of earthquake. The peak responses of the dam for various earthquake
(transverse and vertical) excitations are summarized in Table (3).
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(c) San-Fernando earthquake.
Figure (6): Response of dam crest displacement when subjected to
various earthquake ( transverse and vertical) excitations.
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Figure (7): Response of normal stress at the dam heel when subjected
to various earthquake ( transverse and vertical) excitations.
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Figure (8): Response of pressure at the dam base when subjected to
various earthquake (transverse and vertical) excitations.

Table (3): Comparison of peak responses of dam for various
earthquake (transverse and vertical) excitations.

10

Response El-Centro Koyna San-Fernando
Description Earthquake Earthquake Earthquake
Dam crest displacement 10.00 -9.66 9.33 -9.33 13.67 -13.67
(cm) at at at at at at
3.33 sec. | 3.53 sec. 4.53 sec. 4.00 sec. 9.72 sec. 9.24 sec.
Stress at the dam heel 800 -720 853.33 -746.67 1066.67 -1013.33
(T/m’) at at at at at at
3.55 sec. | 3.50 sec. 4.20 sec. 4.47 sec. 7.59 sec. 9.19 sec.
Pressure at the Dam base 50 -65 166.67 -180.00 180.00 -166.67
(T/m’) at at at at at at
3.85 sec. | 3.60 sec. 5.47 sec. 3.15 sec. 8.92 sec. 8.98 sec.
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6.1.4 Effect of Structural Damping

The responses of Koyna dam when subjected to the transverse component of the Koyna
earthquake for 0%, 5% and 10% damping are shown in Figures (9,10 and 11), respectively. It
is observed that the effect of structural damping is significant and, therefore, estimation of
damping in the evaluation of the response should be made carefully. The peak responses of
the dam for different damping ratios are given in Table (4).
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Figure (9): Response of dam crest displacement when subjected

to transverse component of Koyna earthquake.
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Figure (10): Response of normal stress at the dam heel when subjected
to transverse component of Koyna earthquake.
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Figure (11): Response of pressure at the dam base when subjected
to transverse component of Koyna earthquake.

Table (4): Effect of structural damping on the response of dam when
subjected transverse component of Koyna earthquake.

Response Description 0 % damping 5 % damping 10 % damping
Dam crest displacement 8.75 -8.75 5.31 -4.37 4.68 -3.44
(cm) at at at at at at
5.8 sec. 4.8 sec. 4.4 sec. 4.5 sec. 3.66 sec. | 3.46 sec.
Stress at the dam heel 700 -650 300 -350 375 -275
(T/m’) at at at at at at
4.55 sec. 7.95 sec. 4.6 sec. 4.4 sec. 3.8 sec. 4.07 sec.
Pressure at the Dam base 68.67 -80.12 39.13 -26.08 32.60 -26.08
(T/m’) at at at at at at
9.26 sec. 7.4 sec. 3.5 sec. 3.26 sec. | 2.93 sec. 0.8 sec.

107




Al-Rafidain Engineering Vol.19 No.6 December 2011

6.1.5 Effect of Material Nonlinearity

The nonlinear response of Koyna dam when subjected to transverse and vertical Koyna
earthquake is shown in Figure (12). The concrete and foundation-rock-soil are represented by
the Drucker-Parger yield criterion. The yield stress values of the concrete and the foundation
rock are taken equal to be 323.94 T/m and 257.75 T/m, respectively. It is found that the effect
of material nonlinearity is significant and when the nonlinearity in the dam structure is

considered, the response reduces appreciably.
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Figure (12): Nonlinear response of dam when subjected to transverse

and vertical components of Koyna earthquake.

108



Al-Damluji: Nonlinear Coupled Finite Element Analysis of A Dam-Reserviour Under -----

7. Conclusions

From this limited investigation the followings can be drawn:

1.

2.

The computer code developed was found to be very useful and can be used for wide
range of applications in many soil-fluid-structure interaction problems.

The partitioned solution scheme in which the fluid, structure and soil-pore fluid is
integrated in staggered fashion was found to be very efficient.

Two-phase materials subjected to dynamic loading can be formulated with approximate
numerical solutions and acceptable degree of accuracy.

Analysis of the actual behavior of constructions during dynamic loading exemplify the
fact that the soil-structure interaction and, in the case of hydraulic structures, the fluid-
structure interaction are phenomena which may have an important influence on the
structural seismic response.

The compressibility of water has a significant effect on the distribution of pressure on the
rigid dam.

6. As the flexibility of the dam system increases, the pressure distribution on the face of dam

also increases. The maximum effect is obtained when both the dam and the foundation
are most flexible. Conversely, when the dam is rigid, foundation flexibility is not so
important.

7. The response characteristics of the dam-reserviour are very much dependent on the type of

earthquake excitation, structural damping and material nonlinearity.
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