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Abstract 
The effect of modified Rayleigh number, positions and lengths of two 

perpendicular heated surfaces on natural convection heat transfer was studied 

numerically, where the two surfaces are embedded in square cavity filled with saturated 

porous medium. All walls of the cavity are kept at constant temperature. Indirect 

numerical method was used to solve the governing equations, which are: the non-

dimensional Darcy flow equation as well as the non-dimensional energy equation, which 

were solved numerically by finite difference method using Gauss-Seidel iteration 

coupled with (Successive Under Relaxation) technique. This study covered a wide range 

of modified Rayleigh number range (100-1000), nine positions and the ratios of length of 

vertical surface to the horizontal (0.5,1, 2). It was found that the positions of two heated 

surfaces have small effect on the heat transfer rate, but any increase in the length of two 

surfaces leads to an increase in average Nusselt number, but an increase in the length of 

vertical surface leads to more increase in the average Nusselt number. 
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 مسامية ن في فجوةإنتقال الحرارة بالحمل الطبيعي من سطحين مسخنين متعامدين مغموري

 
 نور منير بشير                                    د.أمير سلطان داؤد   أ.م.

 هندسة التبريد والتكييف -الكلية التقنية                              الميكانيكية كلية الهندسة -جامعة الموصل

 

 الخلاصة
في هذا البحث تم إجراء دراسة عددية لبيان تأثير عدد رالي المطور ومواقع وطولي السطحين المسخنين 

المتعامدين على انتقال الحرارة بالحمل الطبيعي، حيث إن السطحين مغمورين في فجوة مربعة الشكل مملوءة بوسط 

لحل المعادلات التي  مباشرةالعددية غير ال ريقةالط. استخدمت ثابتةمسامي مشبع. تكون جدران الفجوة عند درجة حرارة 

تحكم الموضوع وهي معادلة دارسي اللابعدية للجريان إضافة إلى معادلة الطاقة اللابعدية واللتين تم حلهما باستخدام 

.  (Successive Under Relaxation)طريقة الفروق المحددة مع طريقة كاوس سيدل المتناوبة وبالاستعانة بتقنية

ولتسعة مواقع، ونسبة طول السطح العمودي إلى  (1000-100)الدراسة مجالآ واسعآ من عدد رالي المطور  غطت

اتضح من هذه الدراسة إن مواقع السطحين المسخنين لها تأثير قليل على معدل انتقال الحرارة ، بينما  .(0.5,1,2)الأفقي 

نسلت وبالتالي زيادة معدل انتقال الحرارة ، ولكن زيادة  أي زيادة في طول السطحين تؤدي إلى الزيادة في معدل عدد

  معدل عدد نسلت تكون اكبر بزيادة طول السطح العمودي.
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Nomenclature 
Dimensionless temperature θ  Aspect ratio A 

Stream function ψ J/kg.K Specific heat at constant 

pressure 

Cp 

Subscript m/s2 Gravitational acceleration  g 

c Cold W/m2.K Heat transfer coefficient hc 

e effective m Location of vertical surface h1 

 h m Location of horizontal surface h2 

 o W/m.K Effective thermal conductivity ke 

Superscript m Length of  porous cavity L 

Dimensionless parameter ^ m Length of  vertical surface L1 

  m (L1=0.1L2) L2 

   Length of  horizontal  surface 

(L2=0.1L1) 

Nu 

  W Nusselt number Qconv. 

  W Convection heat flow rate Qcond.. 

   Conduction heat flow rate Ra* 

  K Modified Rayleigh number T 

  m/s Temperature u 

  m/s Fluid velocity in x-direction v 

  m2/s Fluid velocity in y-direction α 

  K-1 Thermal diffusivity  β 

  m2/s Coefficient of thermal 

expansion 

υ 

  kg/m3 Kinematic viscosity  ρ 

  kg/m.s density µ 

 

 1: Introduction 
Natural convection is one of the important modes of heat transfer. It occurs 

frequently as a result of density inversion caused by either the thermal expansion of a fluid, or 

the concentration gradients within a fluid system. This leads to generating the buoyancy force 

which driving the flow. Natural convection cooling is desirable because it doesn't require an 

energy source, such as a forced air fan and its maintenance free and safe. Natural convection 

can also happen in a porous medium saturated with a fluid. Generally, the porous medium 

means a material consisting of a solid matrix with an interconnected void. The solid matrix is 

supposed to be either rigid or it undergoes small deformation. The interconnectedness of the 

void allows the flow of one or more fluids through the material [1]. The porous media can be 

naturally formed (e.g. rocks, sponges) or fabricated (e.g. insulation, wicks) [2]. The analysis 

of heat transfer in porous media is required in a large number of applications. The 

applications are in the areas of chemical, mechanical and petroleum engineering. It is used in 

insulations, wicked heat pipes, storage of absorbed solar energy, nuclear reactors using 

gaseous coolants flowing through radioactive pellet [3,4]. Several studies have been carried 

out on free convection heat transfer for a vertical or a horizontal plate embedded in porous 

medium. Bejan & Anderson [4 ] examined the buoyancy induced circulation occurring on both 

sides of a vertical impermeable partition separating two semi-infinite porous reservoirs 

maintained at different temperatures. But, Bejan [6 ] studied numerically the effect of internal 
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flow obstruction on heat transfer through a two-dimensional porous layer heated from the 

sides. Three types of flow obstructions were considered. Nazar et al. [7 ] performed a 

similarity analysis of the steady free convection boundary layer over horizontal surface 

embedded in a fluid saturated porous medium with mixed thermal boundary conditions. 

Bansod & Jadhav [8 ] analyzed the heat and mass transfer characteristics of natural convection 

a bout a horizontal surface embedded in a saturated porous medium. From the previous 

works, various studies had been published on the mechanism of convection heat transfer of 

vertical or horizontal plates separately, embedded in porous medium. However no work has 

been done on the vertical and horizontal plate together. So, the present work represented the 

natural convection heat transfer from two perpendicular heated surfaces with different 

dimensions and locations embedded in porous cavity at different modified Rayleigh numbers. 

The main object of this study is to investigate numerically the effect of the surfaces lengths as 

well as the locations on the natural convection heat transfer inside a porous cavity. The results 

will be represented graphically in terms of isotherms and streamlines. 

 

2: Mathematical Formulation 
Consider two normal isothermal surfaces at the same constant hot temperature 

(Th) , embedded in a porous cavity of dimension L×L, the walls of the cavity are kept at 

constant cold temperature (Tc). The length of the hot surfaces is L1 and L2, respectively. The 

location of these surfaces from the right enclosure side and bottom is h1 and h2 respectively 

,see figure (1).  

 

The following assumptions are made in order to simplify the analysis of the problem: 

1. The fluid is incompressible, the flow is steady and laminar. 

2. A continuum saturated porous 

medium.  

 3. Viscous dissipation is neglected. 

4. Heat generation is neglected. 

5. Impermeable boundary surfaces. 

 6. Homogenous and isotropic 

properties of the fluid and solid 

matrix. 

7. At any point in the porous 

medium, the solid matrix is in 

thermal equilibrium    

    with the fluid filling the pores. 

8. Fluid properties are constant expect 

for the buoyancy term.   

The equations that govern 

the heat transfer and fluid flow in a 

saturated porous medium are the 

continuity, momentum, and energy 

[3]; 
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Figure (1):  Physical problem 
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The boundary conditions are required to complete the formulation of the problem. 
The hot surface locations varied taking into consideration the horizontal distance from left 

vertical wall of the cavity to the center of the horizontal hot surface is 25%, 50% and 75% 

from the cavity width. Also the vertical 

distance from the bottom wall of the 

cavity to the horizontal hot surface is 

25%, 50% and 75% of the cavity 

height, due to that nine positions are 

got as shown in figure (2).  

 

  

3: Dimensionless Formulation 
All the spatial dimensions 

are non-dimensionalized with respect 

to cavity dimensions (L), then: 
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The stream function is defined in terms of the velocity components, which 

satisfies the continuity equation: [2] 
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The stream function is non-dimensionalized as follow:  

         
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
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                                                                                                                    7  

    The governing equations and the boundary conditions will take the following    

     non-dimensional forms: 

    3-1: Momentum Equation  
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Figure (2): Different positions of the 

 hot surfaces in a square cavity. 
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   3-2: Energy Equation         
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3-3: Boundary Conditions: The figure (3) shows the non-dimensional boundary condition for 

the square cavity, where: 
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For the isothermal hot surfaces the dimensionless boundary conditions are: 
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4: Output Quantities 
              Nusselt number, which is the ratio of the convective to conductive heat transfer, is an 

important output quantity [9 ]. 
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Where (0) indicated zero Rayleigh number. 

The convective heat transfer is calculated for the horizontal wall from:     
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Where as the conductive heat transfer is calculated from: 
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In dimensionless form, the equation becomes: 

         


























1

0
1,0

xd

y

Nu

y


                                                                                          19           

Similar forms exist for the vertical walls. The average Nusselt number  

( Nu ) is then calculated by averaging the local Nusselt numbers at the four walls [01  ], which 

the same Nusselt number being calculated for the hot surfaces using equations (19). 

 

5: Numerical Approach 
In the numerical approach, a fairly complete mathematical description of heat 

transfer phenomena, as well as it is capable of handling large systems of equations, 

nonlinearities, and complicated geometries that are often impossible to solve analytically, 

therefore the differential equations are solved numerically. The base of finite difference 

technique is to approximate all the partial derivatives in the equation using Taylor series 

expansion. For simplicity, we assume that both x and y are constant. Using the centered, 

forward, and backward differences approximation. After substituting the finite-difference in 

the non-dimensional governing equations, the following expressions are obtained: 
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Then the above equations are re-arranged in a form that enables them to be handle by a 

computer, where the computer program is written in the (Fortran 90) language by using 

program (Fortran Power Station). This program was used on different numbers of grid points, 

modified Rayleigh and aspect ratio. The grid independence of the results must be tested. The 

modified Rayleigh number in this test is set to be 1000, while the grid size varies from 20*20 

to 90*90 and at aspect ratio of 1.0, as shown in figure (4). 

 
 

 

 

It was found that the change in the heat flow rate for grid size of 40*40 and 50*50 is 

less than 0.1%. Therefore, the number of points (grid)  that is adopted in the present study is 

40*40. The number of points was selected as a compromise between accuracy and speed 

computation. Using the Gauss Siedel iterative method. The convergence rate of the Gauss-

Seidel iterative procedure can often be improved by applying "acceleration" procedures 

(reduce computation time). The simplest of these is known as Successive (Over & Under 

Relaxation), used Successive Under Relaxation (SUR). Those methods are used to find the 

actual value of temperature and stream-function with an accuracy of 4

,, 10 jiji TTN . 

 

6: Validation. 
The comparison problem is simply convective heat transfer in a two-dimensional 

porous cavity, subject to different temperatures on its vertical sides, while the horizontal sides 

are perfectly insulated. Table shown below, show comparisons at two different values of 

modified Rayleigh number 50 and 100, and at aspect ratio of 1.0. The results agree with the 

present results with a maximum difference of 2% at 100Ra , these differences are 

attributed to the finite difference approximation. 

 

 

 

 

 

5

5.5

6

6.5

7

7.5

8

0 10 20 30 40 50 60 70 80 90 100

Figure (4): Variation of heat flow rate vs. number of grid at Ra
*
=1000. 
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Nu  

 

Ra* 

 

 

A 

Present 

Work 

Burns 

et al [14] 

Bejan& 

Tien [13] 

Dawood& 

Burns  [12] 

Chan 

et al. [11] 

2.11 2.200 --- 2.220 2.100 50  

1.0 3.54 3.600 3.600 3.472 3.560 100 

 

7: Results.  
The main purpose of this study is to investigate the effect of the two perpendicular 

isothermal hot surfaces lengths, as well as the positions on the natural convection heat transfer 

inside a porous cavity. The investigation parameters are: modified Rayleigh numbers (

1000100  Ra ), nine positions of hot surfaces, and the lengths of hot surfaces either equal 

or different. 

 

7-1: The hot surfaces with the same lengths 

7-1-1: The hot surfaces in the mid height of cavity (P1, P2, P3): The positions of hot 

surfaces in the mid height of cavity which is represented by (P1, P2, and P3) in figure (2). A 

horizontal distance from left vertical wall of the cavity to the center line of the horizontal hot 

surface is 25%, 50% and 75% from the cavity width, respectively. The vertical distance 

between the bottom wall of the cavity and the horizontal hot surface is 50% of the cavity 

height. Figure (5) illustrate the effect of hot surfaces for these positions on the streamlines and 

isotherms, at different modified Rayleigh numbers. Two counter-rotating cells, the left cell 

rotates counter-clockwise, but the other cell rotates clockwise and each cell rotates around a 

point of maximum stream functions  max , cells formed due to presences of hot surfaces. 

The warm fluid is rising slightly in the vicinity from the hot surfaces, turning at the top of the 

cavity, moving adjacent the cold wall, turning, and descending along the two vertical walls of 

the cavity. The result for this motion of flow causes the circulating motion for the cells. The 

maximum value of stream function can be viewed as a measure of the intensity of natural 

convection in the cavity. 

The effect of changing modified Rayleigh number on the isotherms at changing 

the positions of hot surfaces shown in the same figure.  It is clear that the isotherms lines start 

to occupies all regions above it, and happen when increased the value of Ra
*
. This is referred 

to increase the rate of heat transfer by natural convection.  

 

7-1-2: The hot surfaces in the lower part of cavity (P4, P5, P6): Figures (6-a & 

6-b) give an idea about the streamlines and isotherms for Ra
*
=1000. Streamlines and 

isotherms have similar behavior that illustrated in aforementioned case. Generally, in these 

positions, the region above hot surfaces is larger which allows more flow circulation. In 

addition to that, streamlines and isotherms start filling the entire cavity with increase in value 

of max  as compared with case one. On the other hand, it reveals that conduction effect 

becomes insignificant below the hot surfaces. This led to large amount of heat transfer by 

natural convection from the hot surfaces to the walls of cavity 
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Figure (5): Effect of the hot surfaces on (a) streamlines; (b) isotherms at different Ra
*
.             

                                                                                                                                         

 

 

 

 

 

 

 

 

 

Figure (6): Effect of the hot surfaces on (a) streamlines; (b) isotherms for L1=L2. 
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7-1-3: The hot surfaces in the upper part of cavity (P7, P8, P9): Also, the same mode of 
previous cases take streamlines and isotherms, but the upward movement of hot surfaces leads 
to flow suppression due to the small area above it, causing decrease from the rate of heat 
transfer. This movement reducing the value of maximum stream functions max  as compared 
to those cases, consequently decreases of heat transfer by natural convection, as shown in Fig. 
(7). 
 

 

 

 

 

 

 

 

 

 

 

 
7-2: The hot surfaces with different lengths: Figures (8,a-b) illustrate the effect  
of different lengths of hot surfaces at Ra

*
=1000. When the length of vertical or horizontal hot 

surfaces is increased, the rotation of the fluid is strong, due to the further amount of fluid 
exposes to heat and this proportionately produces large buoyancy force inducing convection. 
The extra heating effect is promoted as the length of vertical or horizontal hot surfaces are 
increased. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (7): Effect of the hot surfaces on (a) streamlines; (b) isotherms for Ra
*
=1000, L1=L2  

 

 

 

 

 

 

 

 

           Figure (8): isograms at Ra*=1000: (a) L1=2L2; (b) L1=0.5L2 for different 

positions. 
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7-3: Heat transfer results: This section presents the effects of modified Rayleigh number, 

length and the positions of isothermal hot surfaces on the relative increase in the rate of heat 

transfer (average Nusselt number) graphically.  Average Nusselt number is plotted as a 

function of hot surface positions at different values of Ra  explained in figure (9). Values of 

average Nusselt number increased with the increase of Ra  in the same position of hot 

surfaces.  It can be observed that placing hot surfaces (P 8 ) reduces from the value of average 

Nusselt number. This is because the hot surfaces in this position block the flow above it. On 

the other hand, flow inhibition as a result diminishes from the rate of heat transfer in (P 8 ). For 

those reasons (P 8 ) is regarded as the best position to minimize the heat transfer by natural 

convection. This position might be used for the best insulation in such case. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In figure (10) it can be observed that increasing 
Ra  enhances Nu . This figure 

shows that Nu  is independent of the positions of hot surfaces, because it is revealed  that 

there is a slight increase of average Nusselt number with positions of hot surfaces. As the 

results, positions of hot surfaces have small effect on the rate of heat transfer. 

 

  

  

Ra* 

Figure (10): Variation of average Nusselt number with modified          

Rayleigh number for different positions of hot surfaces. 

 

Positions of hot surfaces 

Figure (9): Variation of average Nusselt number vs. positions o  hot surfaces for 

different modified Rayleigh number. 
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Fig. (11) shows Nu  for different values of Ra  and different lengths of vertical 

and horizontal hot surface at each position. It was found that Nu  increases with the increase 

in 
Ra  and length of vertical hot surface in each position. In general, the length of hot 

surfaces plays a vital role in the overall heat transfer rate, specially the length of vertical hot 

surface regardless of its position. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (11): Variation of average Nusselt number vs. modified  Rayleigh number 

 at different lengths of hot surfaces.  
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8: Conclusions. 
The main conclusions of the present study are: 

1. Average Nusselt number increases with the increase of the lengths of vertical and 

horizontal hot surfaces. 

2. Positions of hot surfaces have small effect on the rate of heat transfer. 

3. The maximum heat transfer occurs by increasing length of vertical hot surface.  
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