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Abstract 
The aim of this study is finding the optimum cost design of reinforced concrete 

columns with all loading conditions (axially, uniaxially and biaxially loaded) using the 

Genetic Algorithms GAs. Many design constraints were used to cover all the reliable 

design results, such as limiting the cross sectional dimensions, limiting the reinforcement 

ratio and even the behavior of the optimally designed sections. 

Each of the designed columns was handled by the GAs solver according to its 

loading condition specifications. The load contour method was used to design the biaxial 

sections with the adjustment of the plastic centroid. A long column constraint was 

introduced to limit the design procedure with the short columns only. The optimum 

results were compared with other published works, and a reduction in design cost of the 

biaxially loaded columns of about 26 % was achieved using the GAs design method 

while a small percent in the cost reduction 

( 1 – 3 % ) was achieved for the uniaxially designed sections, while 50% was the cost 

savings in the axially loaded columns. It was proved that the genetic algorithm is 

capable for designing optimum columns sections despite the complex constraints that 

control the designing procedure. 

Key Words:- Optimization, Genetic Algorithm, Optimum Cost Design,  Reinforced 

Concrete Columns 

 

 الأمثل للأعمدة الخرسانية المسلحة باستخدام الخوارزميات الجينية الكلفة تصميم
 

 

 

 

 الخلاصة
جميع حالات  تأثيرالخرسانية المسلحة تحت  للأعمدةللكلفة  الأمثلالتصميم  إيجادالهدف من هذه الدراسة هو 

تصميم لتغطية اكبر عدد من الحلول المثلى التحميل باستخدام الخوارزميات الجينية. تم استخدام العديد من محددات ال

المقطع ونسبة حديد التسليح وحتى التحكم بطبيعة تصرف العمود بعد  أبعاد                                      لجعل التصميم قابلا  للتنفيذ، مثل تحديد 

 المسلطة عليه. الأحمالتصميمه تجاه 

لتصميم  load – contourالمسلطة عليه، واستخدام طريقة  للأحمال                                      تم تحديد طريقة التصميم لكل عمود تبعا  

القصيرة فقط  للأعمدةالمحملة بعزوم بالاتجاهين، مع تعديل المركز اللدن الخاص بالمقطع، واعتماد التصميم  الأعمدة

 وفق محددات مسبقة.

% 62وتم الحصول على مقاطع أرخص بنسبة                         مع نتائج منشورة مسبقا .  الأمثلوجرى مقارنة نتائج التصميم 

، % ( في حالة الأعمدة المحملة بعزم باتجاه واحد 3 – 1محملة بعزم ثنائي المحور وبنسبة أقل ) في حالة الأعمدة ال

طريقة الخوارزميات الجينية بقدرتها على  وأثبتت.                                  % في حالة الأعمدة المحملة مركزيا  05بينما قلت الكلفة بنسبة 

 بوجود العديد من محددات التصميم.الخرسانية  الأعمدةالتعامل مع مسائل على جانب من التعقيد كتصميم 
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List of Symbols 

 
  : Steel reinforcement  ratio for the designed section 


cf  : Concrete compressive strength 

yf  : Steel yield stress 

uP  : Applied load 

ten  : Reinforcement ratio of the tension face 

com  : Reinforcement ratio of the compression face 

2,1  : Exponents depending on the cross section geometry, steel percentage, 

and its location and material stresses fc
-
 and fy 

xten,  and xcom,  : Reinforcement ratio of the tension face and the compression face in the 

x direction 

yten,  and ycom,  : Reinforcement ratio of the tension face and the compression face in the 

y direction 
A : Cross sectional area 
b : Column width 

Cc : Cost of concrete material 
Cs : Cost of steel material 

Ct : Total cost of the section 

h : Column height 
I : Moment of inertia of the cross section 

Mnx : Applied moment in the x - direction, Pn   ey 
Mny : Applied moment in the y - direction, Pn   ex 
Mox : Mnx at such an axial load Pn where Mny or ex = 0 

Moy : Mny at such an axial load Pn where Mnx or ey = 0 
r : Ratio of steel cost to concrete cost ( Cs / Cc ) 
rd : Radius of gyration 

 

1. Introduction 
 

Genetic algorithms GAs, are iterative search procedures based on the mechanics of 

natural genetics and natural selections. GAs are computationally simple, but powerful in their 

search for improvement and do not require problem specific knowledge in order to carry out a 

search. 

The simple genetic algorithms, which are applications of biological principles into 

computational algorithms, have been adapted to work with many kinds of structural design 

problems. It was used to obtain optimal or near-optimal solutions for many types of discrete 

or continuous variables in structural design problems and it dose not need derivatives of 

functions unlike mathematical programming methods. 

 

For structures made of two or more different materials, minimum weight has no 

meaning with respect to optimization. Optimization has to be formulated as minimum cost. 

Hundreds of papers have been published on optimization of structures. However, only a small 

fraction of them deal with cost optimization of structures. For concrete structures the 
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objective function to be minimized should be the cost since they are made of more than one 

material [1]. 

 

The basic element of the GAs is the chromosome. The chromosome contains the 

variable information for each individual solution to the problem. The most common coding 

method is to represent each variable with a binary string of digits with a specific length. For 

example, as illustrated in Fig.(1), to represents the column in GAs, each of the design 

variables shown in the figure, should be encoded into a binary digits to assemble the genes 

that forming each chromosome. The chromosome contains six genes. To represents column 

width, column height and the reinforcement ratio which will be represents by four genes, each 

gene stands for the reinforcement ratio of a single face of the column section, this procedure 

was adopted to ensure that the optimization design will fulfill its purpose, which it will not be 

happened if the reinforcement ratio is taken to be equal for all the faces of the section [2]. 

 

After that, Random numbers are used to generate the 1’s and 0’s that represent the 

genetic material of each individual. The genetic algorithm sequence begins with the creation 

of an initial population of individuals. The size of the population is chosen by the program 

user. With the chromosomes created, the binary string data of each solution must be converted 

into useable problem data. Evaluation of the fitness value is then started, which in this study 

will be the cost of the structure, and a roulette selection is adopted to the chromosomes for 

creating the next generation. The crossover process now begin, which is the process by which 

the genetic material of two “parents” will be combined to create a new solution. Different 

selection methods exist for choosing the parents to be involved in each crossover. The method 

used in this project is referred to as scattered crossover. A group of the most-fit parents, along 

with the newly created individuals, are allowed to pass into the new generation with an 

account of 2. The less-fit solutions are discarded. At this time, the genetic material of the 

individuals is subject to mutation operation. A small percentage of individuals in the 

population have one or more of their binary digits altered. Mutation forces the genetic 

algorithm to explore new areas of the search space. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Elitism is used at this time also. Elitism protects a certain number of the most-fit 

individuals from mutation. Although exploring new areas of the search space is beneficial, 

keeping the genetic material of highly-fit individuals is sometimes preferred. So, as a result, a 

Fig. (1) Genetic Algorithm representation  for column 
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new generation will be found that represents the optimum solution of the design variables 

submitted to the design constraints that control their values through the GAs solution with the 

used code limitations and the bounds of the design variables [3]. 

 

Finally, after all the GAs operations are performed and the entire process is repeated. 

The amounts of generations will cycle through per “evolution”. The GAs can run until one of 

the stopping criteria is reached. The most stopping criteria were reaching the function 

tolerance. 

 

Fadaee and Grierson [4], present the minimum cost design of three dimensional RC 

frames with members subjected to biaxial moments and shear forces using optimality criteria 

approach based on the ACI code (ACI, 1995). Beams and columns are assumed to have 

rectangular sections. The cost function includes the material costs of concrete, steel, and the 

formwork. The focus of this work is formulation of the appropriate constraints for 

combinations of the axial load, biaxial bending moment, and biaxial shear. Their example is 

only a one-bay and one-story space frame. They conclude that the biaxial shear is an 

important consideration for the design of columns and its inclusion increases the cost of the 

optimum structure significantly. 

 

The reinforcing steel bar number and the number of the bars or topology of the 

reinforcement were used by Camp, et. al. [5], as design variables with the width and the 

thickness of the sections, for the design of reinforced concrete frames using the genetic 

algorithm and a penalized objective function was used for forming an unconstrained problem 

in order to introduce feasibility into the fitness of the solution, with flexural constraints for 

beams and slenderness effect for columns. 

 

Kwak and Kim [6], adapted an algorithm to evaluate the fitness values of many 

sections by constructing a database that contain 2450 sections for beams and the same for 

columns, these section were submitted to some practical limitations such as: the column 

dimensions shall not be less than 30 x 30 cm with a depth to width ratio about 1 – 2, and for 

beam 20 x 35 cm with a depth to width ratio about 1.5 – 2.5, also these dimensions were 

rounded to the nearest 5 cm. As for the reinforcement, the sections were reinforced with a 

ratio between the minimum and the maximum in order to insure handling the applied loads. 

For columns design, the P – M interaction diagram was divided into three zones depending on 

the boundary values of the eccentricity. For beam design, the sections were designed to resist 

two applied moments, the first is at the face of the support and the other is at the mid-span. 

These sections were used to design a multi bay – multi story plane frames. 

 

Aschheim, et al. [7], obtained a general solution for the optimal reinforcement of 

rectangular reinforced concrete sections for a general P, Mx & My load combination to 

represent beams, columns & wall sections using a nonlinear conjugate gradient search 

technique, taking the reinforcement ratio as a design variable only and leaving the section 

dimensions to be assumed according to the ACI Code (2005) limitations.. Some 

considerations was taken into account to match the provided reinforcement with the optimal 

solution. The optimal solution was found in many ways such as: equal reinforcement on all 

faces, equal reinforcement on opposite faces and unique reinforcement on each face. 
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The Genetic Algorithm was used by Sahab [8], to find the optimum cost of flat slab 

buildings including the cost of material and labor for concrete, reinforcement, formwork of 

floors, columns and foundations. Also investigating the influence of the unit cost of the 

materials and their characteristic strength on the optimum design. The design variables were 

represented by the slab thickness and dimensions, the reinforcing steel and its distribution, 

columns dimensions (which was assumed to be equal) with its reinforcing steel. 

The effect of the unit cost was studied through a numerical example which was chosen 

from a report on the comparative costs of concrete and steel framed office building that has 

been recommended to be a benchmark for future studies. 

In this paper, the optimum cost will be found for axially, uniaxially and biaxially 

loaded reinforced concrete columns using GAs. Also, the effect of materials prices for both 

steel and concrete on the optimum design will be conducted. 

 

2. Optimum Design for Axially Loaded Columns 
2.1 Objective Function 

The cost function is represented by eq. (1), which will be the cost of concrete and steel 

materials. 

Ct = Cc × b × h × { 1 + (r × ) }      ……..…(1) 

where: r represent the ratio of 1 m
3
 steel cost to a 1 m

3
 concrete cost, which was equal to 75 in 

this study. Since the weight of 1m
3
 of steel is equal to 7850 kg, with price of 750000 ID, and 

the price of 1m
3
 of concrete is equal to 75000 ID, so the cost ratio of 1m

3
 of reinforced 

concrete will be ( r = 7850   750000 / 75000 ) which is about 78.5 . 

While the design variables will be the dimensions of the column and the reinforcement ratio, 

considering that the width and the height of the column section will be equal. 

 

2.2 Design Constraints 

To achieve the optimum solution using the GAs, design constraints for the problem 

should be defined. For the axially loaded column, the used design constraints were: the 

maximum design strength of the section, eq. (2). 

 
01

))(()))()((85.0(8.065.0


  hbfhbhbf

P

yc

u


 ……..…(2) 

In order to limiting the reinforcement ratio with maximum and minimum values, using 

eqs. (3) and (4), according to the ACI code (10.9.1)[9]. 

01
08.0




         ……..…(3) 

0
01.0

1 


         ……..…(4) 

For ensuring that the optimum dimensions of the column will not be less than a 

specified limit, using eqs. (5) and (6). 

0
3.0

1 
b

         ……..…(5) 

0
3.0

1 
h

         ……..…(6) 

And finally a constraint to make the optimum section symmetrical as specified 

previously to achieve the axially loaded column requirements, eq. (7). 

0hb          ……..…(7) 
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3. Optimum Design for Eccentrically Loaded Columns  
3.1 Objective function 

 The cost function of this kind of loaded column will not be differs from the case of the 

axially loaded column except that in this case the reinforcement ratio will be divided into two 

parts, one for the tension face and the other is for the opposite compression face. Since the 

optimization demands requires that the reinforcement ratio is not necessary equals at the faces 

of the column, other wise it is not an optimization problem except for the case of axially 

loaded column as explained before. The cost function represents by eq. (8) that contains the 

following design variables: 

Ct = Cc × b × h × { 1 + (r × )( comten   ) }     ……..…(8) 

 

3.2 Design constraints 

Since there are so many equations that control the strength of the column cross section 

and affects its optimum design, compromising the design variables to find the optimum 

solution will be a little bit harder than any other case so far. 

The constraints function will be written in term of the design variables, and since it 

should be decided before the solution is started whether the designed constraints will be 

following a compression design condition or a tension design one. Therefore, in this study, 

the design constraints will be towards the balanced condition, after that, the suboptimal 

dimension will be chosen to make the column under compression. 

The first three constraints, were for limiting the applied force with the balanced force 

of the section, also the applied moment will be limited to the balanced moment of the section 

meaning that  (e is equal to ebalanced). 

 

0 baln PP          ……..…(9) 

01 









bal

n

M

M
        ……..…(10) 

01 



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




bale

e
         ……..…(11) 

hbfhbfbafP tentenscomcomscbal    ,,85.0   ……..…(12) 
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
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          ……..…(15) 

balbalbal PMe          ……..…(16) 

nn PMe           ……..…(17) 
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 cycoms fff 85.0,         ……..…(18) 

 

Where: 

ytens ff 

,  

1 = 0.85 

Es = 200000 MPa 

Pn : Applied force 

Mn : Applied moment 

 

The design constraints used for limiting the cross section dimension before in the 

axially loaded column, were also used for this case, by making the least dimension of a 

section is not less than (300 mm), and the ratio of the height of the cross section to the width 

is ranged from (1 to 2), with a minimum width of (500 mm). As can be seen from the 

following equations. 

0
3.0

1 
b

         ……..…(19) 

0
3.0

1 
h

         ……..…(20) 

01
5.0


b

         ……..…(21) 

01
0.1


h

         ……..…(22) 

 
01

0.2

/


bh
         ……..…(23) 

 
0

0.1

/
1 

bh
         ……..…(24) 

 

 The reinforcement ratio was also limited within the design code requirements, but in 

this case both ratios of the compression and tension steel were compared together with the 

minimum and maximum ratio of reinforcement, eqs. (25) and (26). 

01
08.0

)(








  comten 
        ……..…(25) 

0
01.0

)(
1 







 
 comten 

        …..……(26) 

 

The new design constraint that was introduced for this problem was for limiting the 

ratio of the length of the column to its cross sectional dimensions, in order to ensure that the 

optimum design will follow the short columns design procedure. Otherwise, a whole new 

design constraints and a different procedure shall be adopted to find the optimum design of 

the slender columns. So, according to the ACI code (10.10.1)[9], the slenderness effect shall 

be neglected for the following case: 

22


d

ub

r

lk
         …..……(27) 
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This equation is for the compression members that are not braced against sidesway.. 

The unsupported length of a compression member, lu, shall be taken as the clear distance 

between floor slabs, beams, or other members capable of providing lateral support in the 

direction being considered. kb, is the unsupported length factor, and its value depends on the 

support condition. But for this study, this factor is taken to be equal to (0.6), which represents 

the case between (fixed – fixed) and (fixed – hinge) supporting conditions. While, rd 

represents the radius of gyration of the cross section, and is equal to: 

A

I
rd           …..……(28) 

Therefore, the last design constraints will be as follow: 

 
01

22

))/()12/(/()( 3



























  hbhblk ub      …..……(29) 

 

 

4. Optimum Design for Biaxially Loaded Columns  
4.1 Load contour method 

 This method involves cutting a three dimensional failure surfaces at a constant value 

Pn ,to give an interaction plane relating Mnx and Mny. In other words, the contour surface can 

be viewed as a curvilinear surface that includes a family of curves, termed the load contours, 

[10]. 

The general non dimensional equation for the load contour at a constant load Pn may be 

expressed as follows: 

0.1

21


























oy

ny

ox

nx

M

M

M

M
       …..……(30) 

The moments Mox and Moy are the required equivalent resisting moment strengths 

about the X and Y axis, respectively. 

Eq. (30) can be simplified using a common exponent and introducing a factor   for 

one particular axial value Pn such that the (Mnx/Mny) ratio would have the same value as the 

(Mox/Moy) as detailed by Parme and associates. Such simplifications lead to: 

0.1


















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




oy

ny

ox

nx

M

M

M

M
       …..……(31) 

Where   would have a value of (log 0.5 / log  ). Fig. (2) gives a contour plot ABC 

from eq. (31), minimum value of   is (0.5) and the maximum value of   is (1), [11]. 
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For design purposes, the contour is approximated by two straight lines BA and BC, 

Fig. (3), and eq. (31) can be simplified to two conditions: 

- For AB when (Mny / Moy) < (Mnx / Mox) 

0.1
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       …..……(32) 

- For BC when (Mny / Moy) > (Mnx / Mox) 
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Fig. (2) Contour   factor chart for  

rectangular columns in biaxial bending 

 

Mnx/Mox 

Mny/Moy 

 

Fig. (3) Modified interaction contour plot of constant Pn for biaxially loaded columns 
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4.2 Objective function 

The cost function of this case is the same as the previous one except that the steel 

reinforcement ratio will be divided in two parts for each direction, one for the tension face and 

the other is for the compression face at the same axis. 

Ct = Cc × b × h × { 1 + (r × )( ,,,, ycomytenxcomxten   ) }   …..……(34) 

The conflict of the reinforcement ratios for each other in the two directions will be 

disregarded, since there is no possible way to decide how many steel bars will be put in each 

face when the solution is started. Meaning that, each optimum reinforcement ratio will be 

found separately without any interaction of other ratios. 

 

4.3 Design constraints 

 Since the basic idea of the load contour method is transforming the biaxial problem 

into an equivalent uniaxial one through eq. (31). This equation will be introduced as a new 

design constraint, and the problem will be solved uniaxially with Mnx considering (ex = 0) and 

uniaxially with Mny considering (ey = 0), and then the new constraint will transform the effect 

of the solved procedure into a biaxial bending problem for both Mnx and Mny. 
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 Also the plastic centroid in these equations will be found in two directions (X and Y) 

without any interaction of the bars positioning as explained previously. As for the slender 

column constraint, the two directions were taken into consideration, by replacing the height 

with the width in the other direction. 
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The reinforcement ratio constraint will have four parameters (two reinforcement ratios 

for each direction – for tension and compression face) as seen in Eqs. (40) and (41). 
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And for the cross section dimensions, minimum and maximum dimensions are 

specified as seen in the following four equations for both width and height, without limiting 

them by any ratio between them. 
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         …..……(43) 
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01
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h

         …..……(45) 

 After finding the optimum design variables, the same steps in finding the suboptimal 
solution that were used for the beam section are used. For the case of the suboptimal column 
section, one problem will be revealed here, which is the overlapping between the 
reinforcement ratios of each intersected faces, meaning that the bar sizes of the corners of the 
column section will have two values, each value came from one of the adjacent faces. In this 
case the maximum bar number is adopted to represents the suboptimal solution to ensure 
representing the optimum solution at one direction and as closest as it can to the optimum in 
the next direction. 

 

5. Numerical Examples 
5.1 Axially Loaded Columns Design 
 A 4 m height column was loaded axially with an applied force of Pu = 4.06 MN, 
having the following material properties fc

-
 = 30 MPa and fy = 400 MPa. The design 

constraints were as explained in the previous chapter, the width of the column cross section 
was limited to be equal to its height to ensure that the load is axially loaded. Also the long 
column constraint was not used in this example for comparison purposes.  

Fig. (4), shows the optimum variables representing the cross section dimensions and 

the reinforcement ratio. Noticing on it, the limitations of the reinforcement ratio are with the 

minimum value. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. (4) Optimum solution for reinforcement ratio 
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The optimum cost was achieved through 12 iterations, also attainment nearly zero 

constraints violation. Table (1) shows the optimum designed section compared to other 

sections designed according to the ACI code with limited reinforcement ratio between 0.01 

and 0.08. As its noticed in this table, many fixed section dimensions were taken to be 

designed and the reinforcement ratios were calculated according to this. It seems that the 

optimum cost section has a cost savings that reaches up to 50% to some designed sections. 

 

5.2 Eccentrically Loaded Column Design 

 Different examples were designed optimally using Gas. The same examples were 

designed by Nawy E. G. [10] and McCormac J. C.[12]. These examples were solved without 

introducing the long column constraints for comparison, and then by using this constraint in 

addition to other constraints in designing these columns, some of the sections were affected 

by it, depending on the magnitude of the applied load and moments and the material 

properties of the columns. 

 

5.2.1 Eccentrically Loaded column example - 1 

 The first example was solved by McCormac J. C. [12], the column was under factored 

load of Pn = 3813.5 kN and moment of 296.6 kN.m, fc
-
 = 27.6 MPa and fy = 414 MPa. The 

design results of this example are shown in Fig. (5), with a cost value of 0.552257Cc. After 

solving the same example using the GAs, the optimum results are shown in Fig.(6) with a cost 

of 0.5435Cc, the optimum solution was achieved through 8 iterations with zero constraints 

violation. 

After rounding the optimum results, the suboptimum solution can be shown in Fig.(7). 

The same example was solved optimally again but this time with the long column constraint. 

The design results did not changed or affected by this factor. 

 

 

 

 

 

 

 

 

Table (1) Cost design for optimum solution for an axially loaded column, 

Pu = 4.06 MN, r = 75 , fy = 400 MPa , fc
-
 = 30 MPa 

 

Solution 

procedure 

Reinforcement 

Ratio (  ) 

Cross section 

Dimension (mm) 

Material Cost   

Cc ($ / m) 

ACI (1) 0.0622 400 0.9064 

ACI (2) 0.0473 425 0.8214 

ACI (3) 0.03486 450 0.7319 

ACI (4) 0.02431 475 0.637 

GAs 0.011 516.7 0.4672 

ACI (5) 0.01 525 0.4823 

ACI (6) 0.01 550 0.5294 

ACI (7) 0.01 575 0.5786 

ACI (8) 0.01 600 0.63 
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Column width = 16” 

(406 mm) 

Column height = 16” 

(406 mm) 

8   25 

Fig. (5) Design of uniaxially loaded column, McCormac J. C. 2001 

Column width 

(394.1 mm) 

Column height 

(788.1 mm) 

Reinforcement ratio of 

the tension face 

0.003 

Fig. (6) Optimum design of eccentrically loaded column, McCormac J. C. 2001 

Reinforcement ratio of 

the compression face 

0.07 

Column width 

(400 mm) 

Column height 

(775 mm) 

Reinforcement of the 

tension face 

2   22 + 1   16 

 

Fig. (7) Optimum design of eccentrically loaded column after rounding the 

results, McCormac J. C. 2001 

Reinforcement of the 

compression face 

2   32 + 1   28 
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5.2.2 Uniaxial column example - 2 

The second example was solved by Nawy E. G. [10]. The column was under load of 

about Pn = 2492.3 kN and Mn = 284.6 kN.m, while the material properties were: fc
-
 = 31 MPa 

and fy = 414 MPa. The column section was designed as shown in Fig. (8), with cost of about 

0.3386Cc. 

Fig. (9) represents the GAs solution with the optimum section variables, the optimum 

solution was achieved through 9 iterations with nearly zero constraints violation and a cost of 

0.3284Cc. The suboptimal solution is shown in Fig. (10) after rounding the optimum design 

variables to get the best practical section near the optimum. 

The same example was solved again by using the long column constraint with a cost 

of 0.3471Cc, the new optimum section increased as shown in Fig. (11) and (12), obviously to 

limit the optimum section dimensions within the short column design procedure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Column width = 15” 

(381 mm) 

Column height = 15” 

(381 mm) 

As = 2580 mm
2

 

Fig. (8) Design of uniaxially loaded column, Nawy E. G. 2003 

Column width 

(306.2 mm) 

Column height 

(612.6 mm) 

Reinforcement ratio of 

the tension face 

0.003 

Fig. (9) Optimum design of eccentrically loaded column, Nawy E. G. 2003 

Reinforcement ratio of 

the compression face 

0.007 
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Column width 

(300 mm) 

Column height 

(625 mm) 

Reinforcement of the 

tension face 

3   16 

Fig. (10) Optimum design of eccentrically loaded column after 

rounding the results, Nawy E. G. 2003 

Reinforcement of the 

compression face 

2   25 + 1   22 

Column width 

(314.9 mm) 

Column height 

(629.8 mm) 

Reinforcement ratio of 

the tension face 

0.003 

Fig. (11) Optimum design of eccentrically loaded column with long 

column constraint, Nawy E. G. 2003 

Reinforcement ratio of 

the compression face 

0.007 

Column width 

(300 mm) 

Column height 

(650 mm) 

Reinforcement of the tension 

face 

2   20 + 1   12 

Fig. (12) Optimum design of eccentrically loaded column with long column 

constraint after rounding the results, Nawy E. G. 2003 

Reinforcement of the 

compression face 

2   28 + 1   25 
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5.3 Biaxially Loaded Column Design 

 Another examples for biaxially loaded column were designed by Nawy E. G. [10] and 

McCormac J. C. [12], those examples were designed optimally using the GAs, using the 

design constraints explained in the previous chapter. 

No long column constraint was used here for comparison. As for the interaction 

between the bars of each side of the section at the corners, it was decided to choose the 

maximum bar size of the two interacted bars at each corner for practical representation. 

 

5.3.1 Biaxially loaded column example - 1 

 The first designed column has the details shown in Table (2) with materials property 

and the applied loads and moments, this column was designed by McCormac [12],   factor 

used in this examples from Fig. (2) was 0.65. The cost values according to the GAs solution 

had witness a reduction percent of about 26.83 %. 

 The final designed sections by the author are shown in Figs. (13). While Fig. (14) 

represents the cost values history of this optimum design showing that the optimum solution 

was achieved through seven iterations only, also Fig. (15) shows that the this example had 

achieved a zero violation for constraints after the 7
th
 iteration. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table (2) Optimum and suboptimum results using GAs , McCormac J. C. 2001 

 

Example details Variables Author 

solution 

GAs optimum GAs suboptimum 

McCormac 

fc
-
 = 27.6 MPa 

fy = 414 MPa 

Pn = 2402 kN 

Mnx = 366 kN.m 

Mny = 306 kN.m 

 = 0.65 

width 558.8 480.5 475 

height 558.8 536 525 

ten. reinf. (y) 8   25 0.0042 – ratio 1848 mm
2
 (3   28) 

com. reinf. (y) 0.0012 - ratio 515 mm
2
 (2   16 + 1   12) 

ten. reinf. (x) 0.0036 – ratio 1702 mm
2
 (2   22 + 3   20) 

com. reinf. (x) 0.0009 - ratio 452 mm
2
 (4   12) 

cost value 0.6161Cc 0.4508Cc  

 

Column width = 22” 

(559 mm) 

Column height = 22” 

(559 mm) 

8   25 

Fig. (13) Design of biaxially loaded column, McCormac J. C. 2001 
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5.3.2 Biaxially loaded column example - 2 

 The second example was designed by Nawy [10], the details shown in Table (3) with 

materials property and the applied loads and moments,   factor used in this examples from 

Fig. (2) was 0.63, the same value was adopted in solving this example for comparison 

purposes. The cost difference between the author design and the GAs design is about 26.5 %. 

Fig. (16) shows the final designed sections by the author, the optimum solution was achieved 

through 6 iterations with zero constraints violations. 
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Fig. (14) Cost function scaling through iterations for biaxially loaded column, 

McCormac J. C. 2001 
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Fig, (15) Maximum constraints violation through iterations for biaxially loaded 

column, McCormac J. C. 2001 
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6. Conclusions 
 

Overall, the methodology of the solution with the GAs provides a robust optimum 

design approach for the challenging problems especially with large constraints requirements, 

and achieving the design requirements with minimum time and effort. It is seems that the cost 

values according to the GAs solution for biaxially loaded columns, had witness a reduction 

percent of about 26.83 % in the first example and about 26.5 % in the second one, as 

compared to the traditional design method by using the same materials price for the two 

designed solutions. While a reduction in the cost values of about 1 – 3 % for the uniaxially 

loaded columns was gained using the GAs optimum design method. Also, the cost savings in 

the axially loaded columns was about 50%. which make this method on the top of the 

available choices for any engineer seeking the optimum design. 

Conducting the completely new optimization problem for the long columns, with all 

of its designing constraints, and not only the special case for the buckling factor, which was 

used in this study. And for a better way optimizing the type of the used columns for the 

structure whether it was short or a long one, instead of using only one design direction, such 

as the short column which was enforced in this study. 

 

Table (3) Optimum and suboptimum results using GAs, Nawy E. G. 2003 

Example 

details 

Variables Author 

solution 

GAs 

optimum 

GAs suboptimum 

Nawi 

fc
-
 = 27.6 MPa 

fy = 414 MPa 

Pn = 1350 kN 

Mnx = 271 kN.m 

Mny = 158 kN.m 

  = 0.63 

width 305 372.5 375 

height 508 517.3 500 

ten. reinf. (y) 8   25 0.0065 – 

ratio 
1848 mm

2
 (3   28) 

com. reinf. (y) 0.0 - ratio 226 mm
2
 (2   12) 

ten. reinf. (x) 0.0035 – 

ratio 

1344 mm
2
 (3   20 + 2   16) 

com. reinf. (x) 0.0 - ratio 226 mm
2
 (2   12) 

cost value 0.45881Cc 0.3372Cc  

 

Column height 

(508 mm) 

Column width 

(305 mm) 

8   25 

Fig. (16) Design of biaxially loaded column, Nawy E. G. 2003 
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