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Abstract 
This paper study the effect of radiation on a steady mixed convection flow of a 

viscous incompressible electrically conducting and radiating fluid over an isothermal 

vertical wedge embedded in a porous medium. The governing nonlinear partial 

differential equations and their boundary conditions are transformed into a nonsimilar 

form by using a suitable dimensionless variables. The system of nonsimilar equations is 

solved numerically using a finite difference method. The present results of local Nusselt 

number are compared with previously published work for the case of Darcy solution. 

The comparison is found to be in excellent agreement. The present results showed that 

as the wedge angle parameter increases the local Nusselt number increases. Increasing 

in the value of the square of the Hartmann number leads to decreasing the value of the 

local Nusselt number. Increasing in the value of the radiation parameter leads to an 

increase in the value of the local Nusselt number. Increasing in the value of the heat 

generation parameter leads to decreasing the value of the local Nusselt number. 

Increasing in the value of the radiation parameter in the presence of the square of the 

Hartmann number and the heat generation parameter has a similar effect on the local 

Nusselt number presented above but with less values. 

 

Keywords: Porous medium, Mixed convection, Wedge, Nonsimilarity solutions, 

Thermal radiation, Heat generation. 

 

الهيدروديناميكي المغناطيسي على طول حافة تأثير الإشعاع على جريان الحمل المختلط 

 عمودية ثابتة درجة الحرارة مغمورة في وسط مسامي مع توليد الحرارة
 د. صدام عطية محمد

 الميكانيكية / جامعة الموصلقسم الهندسة 

 

 الخلاصة
البحث يدرس تأثير الإشعاع على جريان الحمل المختلط المستقر لمائع لزج غير قابل للانضغاط موصل هذا 

للتيار الكهربائي ومشع فوق حافة عمودية ثابتة درجة الحرارة مغمورة في وسط مسامي. لقد تم تحويل المعادلات 

المتحكمة وشروطها الحدية إلى شكل لامتماثل بواسطة استعمال متغيرات لابعدية مناسبة. إن  اللاخطيةالاشتقاقية الجزئية 

إن النتائج الحالية لعدد نسلت الموقعي قد تمت طريقة الفروق المحددة.  خدامنظام المعادلات اللامتماثل تم حله عدديا باست

النتائج  إنلقد أظهرت المقارنة تطابق ممتاز بين الحلين. ي. مقارنتها مع نتائج عمل سابق مطبوع لحالة الحل الدارس

الحالية قد بينت انه بزيادة معلمة زاوية الحافة فان عدد نسلت الموقعي سيزداد. الزيادة في قيمة مربع عدد هارتمان 

زيادة في قيمة  إلىيؤدي الحراري  الإشعاعالزيادة في قيمة معلمة  إنالنقصان في قيمة عدد نسلت الموقعي.  إلىيؤدي 

الزيادة في  عدد نسلت الموقعي. الزيادة في قيمة معلمة التوليد الحراري تؤدي الى النقصان في قيمة عدد نسلت الموقعي.

الحراري بوجود مربع عدد هارتمان ومعلمة التوليد الحراري له تأثير مشابه على عدد نسلت الموقعي  الإشعاعمعلمة 

         اقل.لكن مع قيم  أعلاهالموضح 
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Nomenclature 

  Constant, equation (8). T Temperature (K). 

   Specific heat of  the fluid 
(     ⁄ ). 

u,v Velocity components in the x and y 
direction (m⁄s). 

  Dimensionless stream function. U_∞ Free stream velocity (m⁄s). 

  Gravitational acceleration 

(   ⁄ ). 

x,y Axial and normal coordinate (m). 

  Local heat transfer coefficient 

(     ⁄ ). 
α Thermal diffusivity of the fluid (m^2⁄s). 

  Index of mesh points in the  -

direction. 

β Thermal expansion coefficient of the 
fluid (1⁄K). 

  Index of mesh points in the  -

direction. 

β_0 Magnetic induction ((Volt.s)⁄m^2 ).  

  Thermal conductivity of fluid 
(    ⁄ ). 

γ Half wedge angle. 

   Mean absorption coefficient 
(  ⁄ ). 

Δζ,Δη Subintervals in the ζ and η direction. 

  Permeability of the porous 

medium (  ). 

ζ Nonsimilarity parameter. 

  Square of the Hartmann number. η Pseudosimilarity variable. 

    Local Nusselt number. θ Dimensionless temperature. 

      Integer numbers greater than zero. λ Wedge angle parameter. 

  Pressure of the fluid (   ⁄ ). μ Dynamic viscosity of the fluid 
(kg⁄(s.m)). 

    Local Peclet number. ρ Density of the fluid (kg⁄m^3 ). 

   Radiation heat flux (   ⁄ ). Σ Prefix indicating summation. 

   Local surface heat flux (   ⁄ ). ψ Stream function. 

  Heat generation parameter. σ Electrical conductivity of the fluid 
(1⁄(ohm.m)). 

   Heat generation constant 
(     ⁄ ). 

σ^* Stefan-Boltzmann constant 
(W⁄(m^2.K^4 )). 

  Radiation parameter.   Porosity 

    Local Rayleigh number.   

Subscript 

max Sufficiently large value. 

na Assumed value not affected by the first convergence criterion. 

new New value. 

old Old value. 

w Surface conditions. 

∞ Conditions far away from surface. 

 

Introduction 
  The study of mixed convection boundary layer flow along surfaces embedded in fluid 

saturated porous media has received considerable interest recently. Interest in such studies 

was inspired by energy applications such as in geothermal operations, petroleum industries, 

thermal exchangers, chemical catalytic reactors, and many others.  
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In this field of study, Yih [1] analyzed the problem of coupled heat and mass transfer 

in mixed convection about a wedge embedded in saturated porous media by nonsimilar 

solutions for the case of variable heat and mass fluxes. Ibrahim and Hassanien [2] studied 

mixed convection along a vertical nonisothermal wedge embedded in saturated porous media 

incorporating the variation of permeability and thermal conductivity. Kumari et al. [3] 

investigated the steady mixed convection flow over a vertical wedge with a magnetic field 

embedded in porous medium. The effects of the permeability, surface mass transfer and 

viscous dissipation have been included in the analysis. Yih [4] presented numerical solutions 

for the effect of radiation on mixed convection flow of optically dense viscous fluids about an 

isothermal wedge embedded in a saturated porous medium. Kandasamy et al. [5] are carried 

out an analysis to study the variable viscosity and chemical reaction effects in a viscous fluid 

over a porous wedge in the presence of heat radiation. The wall of the wedge is embedded in a 

uniform Darcian porous medium in order to allow for possible fluid wall suction or injection. 

The above references are considered Newtonian fluids. Previous works that considered non-

Newtonian fluids are found in references [6-8]. 

Previous works in this field that considered Newtonian fluids don't take into 

consideration the radiation effects on magnetohydrodynamic mixed convection flow with heat 

generation. Therefore, the aim of the present work is to study the effect of radiation on a 

steady mixed convection flow of a viscous incompressible electrically conducting and 

radiating fluid over an isothermal vertical wedge embedded in a porous medium with heat 

generation.  

 

Mathematical Formulation 
Consider a two-dimensional steady mixed convection flow of a viscous 

incompressible electrically conducting and radiating fluid over an isothermal vertical wedge 

embedded in a porous medium. The coordinate system is shown in Figure (1). A temperature 

dependent heat source is assumed to be present in the flow. The fluid is assumed to be gray, 

emitting and absorbing radiation but non-scattering medium. A magnetic field of uniform 

strength is applied transversely to the direction of the flow. The transverse applied magnetic 

field is assumed to be very small, so that the induced magnetic field is negligible.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure (1): Flow model and physical coordinate system. 
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The surface of the wedge is maintained at a uniform constant temperature   , which is 

higher than the corresponding value   , sufficiently far away from the wedge surface. Also 

the fluid is assumed to has constant properties except the density in the buoyancy term of the 

balance of the momentum equation that is approximated according to the Boussinesq 

approximation. In the absence of an input electric field, the governing boundary layer 

equations are: 

 

1- Continuity equation. 

 
  

  
 

  

  
                                                                                                                (1) 

where u and v are the velocity components in the x and y directions respectively. 

 

2- Momentum equation [9,11] 

a- in the x-direction  
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)                                                                                      (2) 

 

b- in the y-direction 
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)                                                                                      (3)  

                                                                                                                                                                                               

Where        𝛾,        𝛾, P,   , and   are the pressure, density and dynamic viscosity  

of the fluid respectively; K is the permeability of the porous medium;   is porosity; g is 

gravitational acceleration;   and    are the electrical conductivity of the fluid and the 

magnetic induction respectively. 

Differentiate equation (2) with respect to y and equation (3) with respect to x, after 

that eliminate pressure term from these equations. Then by invoking the Boussinesq 

approximation      [   (    )] [9] and under the assumptions that (1) within the 

boundary layer (           )⁄⁄  and (2)    𝛾 and    𝛾 are of the same order of 

magnitude (the buoyancy force normal to the heated surface is negligible). The latter 

approximation is valid for a wide range of wedge angle except near 𝛾     in Figure (1a) or 

near 𝛾      in Figure (1b) [4]. Therefore, the final form of the momentum equation will be 

in the following form: 

 

    
  

  
 

        

 

 
 

   
 

 

  

  
                                                                                                                 (4) 

Where T is temperature;    and     are the free stream density and temperature respectively; 

  is the thermal expansion coefficient of the fluid. 

 

3- Energy equation 

 
  

  
  

  

  
  

   

    
 

    

   

  
 

  

    
(    )                                                            (5) 

 

where   is the thermal diffusivity of the fluid;    is the specific heat of the fluid at constant 

pressure;    is the radiation heat flux, and    is the heat generation constant. 
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4- Radiative heat flux 

The thermal radiation is assumed to be present in the form of a unidirectional flux in 

the y-direction i.e.    (transverse to the wedge surface). By using the Rosseland 

approximation [7], the radiative heat flux is given by: 

 

    
   

   

   

  
                                                                                                             (6) 

 

where    is the Stefan-Boltzmann constant and    the mean absorption coefficient. It should 

be noted that by using the Rosseland approximation, the present analysis is limited to 

optically thick fluids. If the temperature differences within the flow are assumed to be 

sufficiently small that    may be expressed as a linear function of temperature [4], i.e. 

 

      
      

                                                                                                            (7) 

 

5- Boundary conditions 

 

    ,        ,                                                                             

                                                                                                   (8) 

 

where    is the free stream velocity; B is prescribed constant;   is the wedge angle parameter 
[  𝛾 (  𝛾)⁄ ] and 𝛾 is the half angle of the wedge. Specifically, the cases of   

  
 

 
       correspond, respectively, to a uniform free stream flowing along a vertical flat 

plate, a free stream flowing over a     wedge, and a stagnation flow normal to a vertical wall 

[1,4]. 

 

6- Dimensionless variables 

In order to obtain a system of equations applicable to the entire regime of mixed 

convection, the following dimensionless variables are introduced [2,4]: 

 

  
 

 
   

   
       ,      [  (

   

   
)
   

]
  

                                                                          (9) 

 

 (   )  
 (   )

    
   

   
    ,    (   )  

    

     
                                                                            (10) 

 

where  , f , and   are the pseudosimilarity variable, dimensionless stream function, and 

dimensionless temperature respectively.   is the stream function, which is defined by 

      ⁄  and        ⁄  such that the continuity equation is automatically satisfied, 

        ⁄  is the local Peclet number,        (     )    ⁄  is the local Rayleigh 

number, and the parameter   is the nonsimilarity mixed convection parameter. A value of 

    corresponds to pure free convection, while     represents pure forced convection. By 

substituting equations (9) and (10) into equations (4) and (5) the following nonsimilar system 

of dimensionless equations are obtained: 
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7- Dimensionless momentum equation. 

 

    (   )  

(   )
                                                                                              (11) 

where      
   ⁄    is the square of the Hartmann number. 

 

8- Dimensionless energy equation. 

 

(  
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)                                                                              (  )   

where        
    ⁄  is the radiation parameter and           ⁄  is the heat generation 

parameter. 

 

9- Dimensionless boundary conditions. 

 

        ,             ,          

       ,            ,                                                                                      (13) 

Physical quantities of interest include the velocity components u and v in the x and y 

directions, the local Nusselt number        ⁄  , where the local heat transfer coefficient 

    (     )⁄  and       [ 
  

  
|
   

 
  

 

    
 

   
  

  
|
   

]. In terms of the new variables, 

these quantities have the expression: 
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]                                        (15) 
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 )   (   )                                                                                           (16) 

 

The primes in equations (11-16) denote partial differentiation with respect to  . The presence 

of    ⁄  in these equations makes them nonsimilar [10]. 

 

Numerical Scheme 
The numerical scheme to solve equations (11) and (12) adopted here is based on a 

combination of the following concepts [6]: 

1- The boundary conditions for     are replaced by   (      )     and 

 (      )    where      is a sufficiently large value of    where the boundary 

conditions (13) for velocity is satisfied. 

2- The two dimensional domain of interest (   ) is discretized with an equispaced mesh 

in the   direction and another equispaced mesh in the   direction. 

3- The partial derivatives with respect to   and   are all evaluated by the central 

difference approximation. The central difference approximation for the partial 

derivatives with respect to   vanish when     and    . 
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4- Two iteration loops based on the successive substitutions are used because of the 

nonlinearity of the equations. 

5- In each inner iteration loop, the value of   is fixed, while each of equations (11) and 

(12) is solved as a linear second-order boundary- value problem of ordinary 

differential equation on the   domine. The inner integration is continued until the 

nonlinear solution converges for the fixed value of  . 

6- In the outer iteration loop, the value of   is advanced from 0.1 to 0.9. The derivatives 

with respect to   are updated after every outer iteration step. 

 

Fortran language is used to program the system of nonlinear equations. The program is 

divided into three parts: the first part obtains the solution of the pure free convection by 

setting the nonsimilarity parameter equal to zero. The second part obtains the solution of pure 

forced convection by setting the nonsimilarity parameter equal to one. The third part obtains 

the solution of mixed convection region for the nonsimilarity parameter values lies between 0 

and 1 (i.e.      ). 

In this work step sizes of         and        are input to the program. A 

convergence criterion of  ∑ |    (   )      (   )|        
  

   
 is adopted in the program for 

all types of convection. Where     (   ) and     (   ) are the new and old value of  f . For the 

mixed convection region, as well as the above mentioned convergence criterion there is 

another convergence criterion on the whole region of mixed convection that is: 

For            

∑ |    (   )     (   )|        
  

   
  

if (yes) then next i . If (no) then updates the values of     and     for the mixed convection 

region (     ) and repeat the solution process for this region. Where    (   ) represent 

the assumed value of   that is not affected by the first convergence criterion. 

 

Results and Discussion 
Numerical results were obtained and presented graphically. In order to validate the 

numerical results, the present results are compared with those of Yih [4] on special case of the 

problem. This favorable comparison give confidence in the numerical results to be reported in 

the next sections. Comparison of    (   
   

   )⁄  values for Darcy solution is shown in 

Table (1). In graphical form it will be shown later in Figure (4). The comparison is found to 

be in excellent agreement. Numerical results were obtained for the combined convection 

parameter   ranging from 0 to 1, the wedge angle parameter   ranging from 0 to 1, the square 

of the Hartmann number   ranging from 0 to 2, the radiation parameter   ranging from 0.5 to 

1.5, and the heat generation parameter   ranging from 0 to 0.5. 

 

Effect of  : Figure (2) displays the effect of various values of   and   on the velocity profiles. 

It can be noticed that for mixed convection region (     ) the velocity of fluid decreases as 

the value of    increase. This has the effect of enhancing the dimensionless surface 

temperature gradient as shown if Figure (3). The physical reason is that the motion of the 

fluid becomes more effective in moving the heat upward relative to conduction, allowing heat 

to move perpendicular to the surface, and hence the thermal boundary layer becomes thinner 

and enhances the dimensionless surface temperature gradient. 
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Figure (2): Effect of  and  on the velocity

profile (M=R=Q=0).  
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Figure (3): Effect of  and  on the temperature 

profile (M=R=Q=0).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This leads to increasing the local Nusselt number as the value of   increase as shown in 

Figure (4). However, this increase is small for lower values of  . Furthermore, at a given 

value of   as   increases from 0 the local Nusselt number decreases, reaches a minimum value 

at a certain value of  , and then increases again as   approaches 1. This is due to the nature of 

the local Nusselt number parameter versus the nonsimilarity parameter and does not imply 

that the actual local Nusselt number value for mixed convection is smaller than that for pure 

forced or pure free convection. This behavior will be repeated in the next figures of the local 

Nusselt number. 

 

 

 

 

 

 

 

 

 

 

Effect of  :  

The presence of a magnetic field in an electrically conducting fluid has the effect of reducing 

the flow due to the resulting resistance magnetic force, which is called the Lorentz force as 

shown in Figure (5) which, in turn, reduces the rate of heat convection in the flow and this 

appears in increasing the flow temperature as the magnetic field strength  

Table (1): Comparison of    (   
  ⁄

   )⁄  values for Darcy solution at values of   and  . 

 

  

Yih [4] Present results 

                            
0 0.4437 0.4437 0.4437 0.444 0.444 0.4443 

0.1 0.4035 0.4044 0.4049 0.3925 0.3927 0.3927 

0.2 0.3732 0.3769 0.3786 0.3698 0.3758 0.3815 

0.3 0.355 0.3643 0.3697 0.353 0.3639 0.3756 

0.4 0.3505 0.3686 0.3823 0.3509 0.3712 0.3954 

0.5 0.3603 0.39 0.4227 0.3615 0.3929 0.4351 

0.6 0.3832 0.4261 0.4854 0.3845 0.4283 0.4929 

0.7 0.4173 0.4731 0.5599 0.4183 0.4744 0.5626 

0.8 0.4602 0.5278 0.6385 0.4607 0.5284 0.639 

0.9 0.5097 0.5878 0.7181 0.51 0.5881 0.7181 

1 0.5642 0.6515 0.7979 0.5643 0.6516 0.798 
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Figure (4): Effect of  and  on the local Nusselt 

number (M=R=Q=0).
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Figure (7): Effect of M and  on the local Nusselt 

number (=1/3, R=0, Q=0).
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increases as depicted in Figure (6). This results in decreasing the local Nusselt number as 

shown in Figure (7). Moreover, it is noticed that the increase in the value of   do not lead to 

appreciable decrease in the value of the local Nusselt number for large values of   . 

 

Effect of  :  

Figures (8) and (9) represents the effect of radiation parameter    on the velocity and 

temperature profiles. It is observed that an increase in the radiation parameter results in 

increasing velocity and temperature within the boundary layer. Thus, the effect of thermal 

radiation is to increase the conductive moment in the boundary layer. Increasing the 

temperature is due to in the presence of radiation the temperature is large. Figure (10) 

illustrates that the increasing in the radiation parameter leads to an increase in the local 

Nusselt number. This fact is expected since the value of the local Nusselt number is directly 

proportional to the value of   in equation (16) and the local Nusselt number is found to be 
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Figure (9): Effect of R and  on the temperature 

profile (=1/3, M=0, Q=0).
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Figure (10): Effect of R and  on the local Nusselt 

number (=1/3, M=0, Q=0).
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Figure (8): Effect of R and  on the velocity 

profile (=1/3, M=0, Q=0).
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Figure (12): Effect of Q and  on the temperature 

profile (=1/3, M=0, R=0).
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Figure (13): Effect of Q and  on the local Nusselt 

number (=1/3, M=0, R=0).
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Figure (11): Effect of Q and  on the velocity 

profile (=1/3, M=0, R=0). 

more sensitive for the radiation parameter than the dimensionless surface temperature gradient 

(–   (   )). 
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Figure (15): Effect of R and  on the temperature 

profile (=1/3, M=1, Q=0.5).
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Figure (16): Effect of R and  on the local Nusselt 

number (=1/3, M=1, Q=0.5).
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Figure (14): Effect of R and  on the velocity 

profile (=1/3, M=1, Q=0.5).

Effect of  :  

When the heat is generated the buoyancy force increases which induces the flow rate to 

increase giving rise to the increase in the velocity profiles, but, this increase is neglected in 

natural convection region and very small in mixed convection region as shown in Figure (11). 

Also, it is noticed that as   increases the temperature profiles increases as illustrated in Figure 

(12). This has the direct effect in decreasing the local Nusselt number with the increasing in 

the value of   as depicted in Figure (13). Also, it is noticed that for lower values of   the 

reduction in the value of the local Nusselt number is small as compared with large values of  . 

 

Effect of   in the presence of   and  :  

Figures (14-16) presents the effects of   and   on the velocity profiles, temperature profiles, 

and local Nusselt number respectively in the presence of   and  . From these figures it can 

be observed that the behavior of the curves shown a similar trends to the behavior of the 

curves in Figures (8-10) with the exception that, the reduction in the velocity of fluid in 

Figure (14) as compared to Figure (8). The increase in the temperature of fluid in Figure (15) 

as compared to Figure (9). This result in reduction in the values of the local Nusselt number in 

Figure (16) as compared to its counterpart presented in Figure (10). 
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Conclusions 
From the previous study it can be concluded that: 

1- As the wedge angle parameter   increases the local Nusselt number increases. 
2- Increasing in the value of the square of the Hartmann number   leads to decreasing 

the value of the local Nusselt number. 
3- Increasing in the value of the radiation parameter   leads to an increase in the value of 

the local Nusselt number. 
4-  Increasing in the value of the heat generation parameter   leads to decreasing the 

value of the local Nusselt number. 
5- Increasing in the value of the radiation parameter   in the presence of the square of 

the Hartmann number   and the heat generation parameter   has a similar effect on the 
local Nusselt number presented above in point 3 but with less values. 
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