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Abstract

This paper study the effect of radiation on a steady mixed convection flow of a
viscous incompressible electrically conducting and radiating fluid over an isothermal
vertical wedge embedded in a porous medium. The governing nonlinear partial
differential equations and their boundary conditions are transformed into a nonsimilar
form by using a suitable dimensionless variables. The system of nonsimilar equations is
solved numerically using a finite difference method. The present results of local Nusselt
number are compared with previously published work for the case of Darcy solution.
The comparison is found to be in excellent agreement. The present results showed that
as the wedge angle parameter increases the local Nusselt number increases. Increasing
in the value of the square of the Hartmann number leads to decreasing the value of the
local Nusselt number. Increasing in the value of the radiation parameter leads to an
increase in the value of the local Nusselt number. Increasing in the value of the heat
generation parameter leads to decreasing the value of the local Nusselt number.
Increasing in the value of the radiation parameter in the presence of the square of the
Hartmann number and the heat generation parameter has a similar effect on the local
Nusselt number presented above but with less values.

Keywords: Porous medium, Mixed convection, Wedge, Nonsimilarity solutions,
Thermal radiation, Heat generation.
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Nomenclature
B Constant, equation (8). Temperature (K).
Cp Specific heat of the fluid u,v Velocity components in the x and y
(J/kg.K). direction (m/s).
f Dimensionless stream function. U oo Free stream velocity (m/s).
g Gravitational acceleration X,y Axial and normal coordinate (m).
(m/s?).
h Local heat transfer coefficient a Thermal diffusivity of the fluid (m”2/s).
(W/m?.K).
i Index of mesh points in the {- B Thermal expansion coefficient of the
direction. fluid (1/K).
Ji Index of mesh points in the n- B O Magnetic induction ((Volt.s)/mA2).
direction.
k Thermal conductivity of fluid v Half wedge angle.
(W/m.K).
k* Mean absorption coefficient AL,AN Subintervals in the Zand n direction.
(1/m).
K Permeability of the porous 4 Nonsimilarity parameter.
medium (m?).
M Square of the Hartmann number. | n Pseudosimilarity variable.
Nu, | Local Nusselt number. 0 Dimensionless temperature.
N, N, | Integer numbers greater than zero. | A Wedge angle parameter.
P Pressure of the fluid (N/m?). u Dynamic viscosity of the fluid
(kg/(s.m)).
Pe, Local Peclet number. p Density of the fluid (kg/m~3 ).
qr Radiation heat flux (W /m?). z Prefix indicating summation.
qQw Local surface heat flux (W /m?). | ¢ Stream function.
Q Heat generation parameter. o Electrical conductivity of the fluid
(1/(ohm.m)).
Qo Heat generation constant on* Stefan-Boltzmann constant
(W/m3.K). (W/A(mA2.KA4 ).
R Radiation parameter. ¢ Porosity
Ra, | Local Rayleigh number.
Subscript
max Sufficiently large value.
na Assumed value not affected by the first convergence criterion.
new New value.
old Old value.
w Surface conditions.

Conditions far away from surface.

Introduction

The study of mixed convection boundary layer flow along surfaces embedded in fluid
saturated porous media has received considerable interest recently. Interest in such studies
was inspired by energy applications such as in geothermal operations, petroleum industries,
thermal exchangers, chemical catalytic reactors, and many others.
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In this field of study, Yih [1] analyzed the problem of coupled heat and mass transfer
in mixed convection about a wedge embedded in saturated porous media by nonsimilar
solutions for the case of variable heat and mass fluxes. Ibrahim and Hassanien [2] studied
mixed convection along a vertical nonisothermal wedge embedded in saturated porous media
incorporating the variation of permeability and thermal conductivity. Kumari et al. [3]
investigated the steady mixed convection flow over a vertical wedge with a magnetic field
embedded in porous medium. The effects of the permeability, surface mass transfer and
viscous dissipation have been included in the analysis. Yih [4] presented numerical solutions
for the effect of radiation on mixed convection flow of optically dense viscous fluids about an
isothermal wedge embedded in a saturated porous medium. Kandasamy et al. [5] are carried
out an analysis to study the variable viscosity and chemical reaction effects in a viscous fluid
over a porous wedge in the presence of heat radiation. The wall of the wedge is embedded in a
uniform Darcian porous medium in order to allow for possible fluid wall suction or injection.
The above references are considered Newtonian fluids. Previous works that considered non-
Newtonian fluids are found in references [6-8].

Previous works in this field that considered Newtonian fluids don't take into
consideration the radiation effects on magnetohydrodynamic mixed convection flow with heat
generation. Therefore, the aim of the present work is to study the effect of radiation on a
steady mixed convection flow of a viscous incompressible electrically conducting and
radiating fluid over an isothermal vertical wedge embedded in a porous medium with heat
generation.

Mathematical Formulation

Consider a two-dimensional steady mixed convection flow of a viscous
incompressible electrically conducting and radiating fluid over an isothermal vertical wedge
embedded in a porous medium. The coordinate system is shown in Figure (1). A temperature
dependent heat source is assumed to be present in the flow. The fluid is assumed to be gray,
emitting and absorbing radiation but non-scattering medium. A magnetic field of uniform
strength is applied transversely to the direction of the flow. The transverse applied magnetic
field is assumed to be very small, so that the induced magnetic field is negligible.

< y +m/2

Flow

|

Flow y

(a) (b)
Figure (1): Flow model and physical coordinate system.
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The surface of the wedge is maintained at a uniform constant temperature T,,,, which is
higher than the corresponding value T, sufficiently far away from the wedge surface. Also
the fluid is assumed to has constant properties except the density in the buoyancy term of the
balance of the momentum equation that is approximated according to the Boussinesq
approximation. In the absence of an input electric field, the governing boundary layer
equations are:

1- Continuity equation.

u v
ax Ty =0 @

where u and v are the velocity components in the x and y directions respectively.

2- Momentum equation [9,11]
a- in the x-direction

__x(or obiu
u=—25(%+pg, + %) @)

b- in the y-direction

_ _Kfop oBiv
v= M(ay pgy + ¢) (3)

Where g, = gcosy, g, = gsiny, P, p, and u are the pressure, density and dynamic viscosity
of the fluid respectively; K is the permeability of the porous medium; ¢ is porosity; g is
gravitational acceleration; ¢ and B, are the electrical conductivity of the fluid and the
magnetic induction respectively.

Differentiate equation (2) with respect to y and equation (3) with respect to x, after
that eliminate pressure term from these equations. Then by invoking the Boussinesq
approximation p = p,,[1— B(T —T,)] [9] and under the assumptions that (1) within the
boundary layer (v < u,0/0x «< d/dy) and (2) cosy and siny are of the same order of
magnitude (the buoyancy force normal to the heated surface is negligible). The latter
approximation is valid for a wide range of wedge angle except near y = 0° in Figure (1a) or
near y = 90° in Figure (1b) [4]. Therefore, the final form of the momentum equation will be
in the following form:

u Poo oT
ou _ ﬁgcozsy_ (4)
9y ©, 96 oy

K ¢

Where T is temperature; p,, and T, are the free stream density and temperature respectively;
B is the thermal expansion coefficient of the fluid.

3- Energy equation

aT T 92T 1 dqr Qo
U—+v—=a—— <+ =-(T-T, 5
dx oy 0y?  peocp 0y PooCP( ) (5)

where a is the thermal diffusivity of the fluid; cp is the specific heat of the fluid at constant
pressure; g, is the radiation heat flux, and Q, is the heat generation constant.
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4- Radiative heat flux
The thermal radiation is assumed to be present in the form of a unidirectional flux in
the y-direction i.e. g, (transverse to the wedge surface). By using the Rosseland
approximation [7], the radiative heat flux is given by:

40* 9T*
3k* dy

qr = — (6)

where ¢* is the Stefan-Boltzmann constant and k* the mean absorption coefficient. It should
be noted that by using the Rosseland approximation, the present analysis is limited to
optically thick fluids. If the temperature differences within the flow are assumed to be
sufficiently small that T+ may be expressed as a linear function of temperature [4], i.e.

T4 = AT3T — 3T ©)

5- Boundary conditions

v
y—oo, u=U,=Bx* T=T, (8)

where U,, is the free stream velocity; B is prescribed constant; A is the wedge angle parameter
[A=y/(m—1vy)] and y is the half angle of the wedge. Specifically, the cases of 1 =

0,§,and 1 correspond, respectively, to a uniform free stream flowing along a vertical flat

plate, a free stream flowing over a 90° wedge, and a stagnation flow normal to a vertical wall
[1.4].

6- Dimensionless variables
In order to obtain a system of equations applicable to the entire regime of mixed
convection, the following dimensionless variables are introduced [2,4]:

n=yeerie L g=[ie ()] 0
O % 0@ = (10)

-1

where , f, and 6 are the pseudosimilarity variable, dimensionless stream function, and
dimensionless temperature respectively. 1y is the stream function, which is defined by
u = 0y/dy and v = — dy/dx such that the continuity equation is automatically satisfied,
Pe, = Uy,x/a is the local Peclet number, Ra, = g,B(T,, — T)Kx/va is the local Rayleigh
number, and the parameter ¢ is the nonsimilarity mixed convection parameter. A value of
¢ = 0 corresponds to pure free convection, while { = 1 represents pure forced convection. By
substituting equations (9) and (10) into equations (4) and (5) the following nonsimilar system
of dimensionless equations are obtained:
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7- Dimensionless momentum equation.

1

fr=Q=02 e (11)
where M = of2K /u ¢ is the square of the Hartmann number.

8- Dimensionless energy equation.

(1+2R)6" +[F(1+20)f] 6" + @776 =
2 ,00  ,0f
55(1—5)(f Era a_() (12)
where R = 40*T2 /k*k is the radiation parameter and Q = Q,x/pcpU., is the heat generation
parameter.

9- Dimensionless boundary conditions.

n=0 , f=0 , 6=1

n-oo , f'=(, 6=0 (13)
Physical quantities of interest include the velocity components u and v in the x and y
directions, the local Nusselt number Nu, = hx/k , where the local heat transfer coefficient

h=qg,/(T,—-T,) and gq, =— [k

these quantities have the expression:

oT 16 ¢*TS, 0T
oy y=0 3 k* 0y y=0

l. In terms of the new variables,

u="2f 0
v=—2pe* L+ A0r ~ 10 -20mf +20 -0 oo
pellv/f;-l - (1 + gR) 6'(¢,0) o

The primes in equations (11-16) denote partial differentiation with respect to n. The presence
of 3/ in these equations makes them nonsimilar [10].

Numerical Scheme
The numerical scheme to solve equations (11) and (12) adopted here is based on a
combination of the following concepts [6]:

1- The boundary conditions for n =oc0 are replaced by f'({,7max) =¢> and
0({, Nmax) = 0 wWhere n,,4, is a sufficiently large value of n where the boundary
conditions (13) for velocity is satisfied.

2- The two dimensional domain of interest (¢, n) is discretized with an equispaced mesh
in the ¢ direction and another equispaced mesh in the n direction.

3- The partial derivatives with respect to ¢ and n are all evaluated by the central
difference approximation. The central difference approximation for the partial
derivatives with respect to ¢ vanish when { = 0and ¢ = 1.
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4- Two iteration loops based on the successive substitutions are used because of the
nonlinearity of the equations.

5- In each inner iteration loop, the value of ¢ is fixed, while each of equations (11) and
(12) is solved as a linear second-order boundary- value problem of ordinary
differential equation on the n domine. The inner integration is continued until the
nonlinear solution converges for the fixed value of ¢.

6- In the outer iteration loop, the value of ¢ is advanced from 0.1 to 0.9. The derivatives
with respect to ¢ are updated after every outer iteration step.

Fortran language is used to program the system of nonlinear equations. The program is
divided into three parts: the first part obtains the solution of the pure free convection by
setting the nonsimilarity parameter equal to zero. The second part obtains the solution of pure
forced convection by setting the nonsimilarity parameter equal to one. The third part obtains
the solution of mixed convection region for the nonsimilarity parameter values lies between 0
and1l(ie.0<{<1).

In this work step sizes of An = 0.02 and A{ = 0.1 are input to the program. A

convergence criterion of Z?’;’llfnew G, 1) = fo1a(j, 1] < 0.0001 is adopted in the program for

all types of convection. Where f,,.,,(j, i) and f,,4(j, i) are the new and old value of f. For the
mixed convection region, as well as the above mentioned convergence criterion there is
another convergence criterion on the whole region of mixed convection that is:
Fori=1,....,N,
) A4

2 faew D) = £ra G, DI < 0.0001
if (yes) then next i . If (no) then updates the values of f's and 8's for the mixed convection
region (0 < ¢ < 1) and repeat the solution process for this region. Where f,,,(j, i) represent
the assumed value of f that is not affected by the first convergence criterion.

Results and Discussion

Numerical results were obtained and presented graphically. In order to validate the
numerical results, the present results are compared with those of Yih [4] on special case of the
problem. This favorable comparison give confidence in the numerical results to be reported in

the next sections. Comparison of Nu,/ (Pe;/ 2( ‘1) values for Darcy solution is shown in
Table (1). In graphical form it will be shown later in Figure (4). The comparison is found to
be in excellent agreement. Numerical results were obtained for the combined convection
parameter ¢ ranging from 0 to 1, the wedge angle parameter A ranging from 0 to 1, the square
of the Hartmann number M ranging from 0 to 2, the radiation parameter R ranging from 0.5 to
1.5, and the heat generation parameter Q ranging from 0 to 0.5.

Effect of A: Figure (2) displays the effect of various values of A and ¢ on the velocity profiles.
It can be noticed that for mixed convection region ({ = 0.5) the velocity of fluid decreases as
the value of A increase. This has the effect of enhancing the dimensionless surface
temperature gradient as shown if Figure (3). The physical reason is that the motion of the
fluid becomes more effective in moving the heat upward relative to conduction, allowing heat
to move perpendicular to the surface, and hence the thermal boundary layer becomes thinner
and enhances the dimensionless surface temperature gradient.
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Table (1): Comparison of Nux/(Pe;/ZZ‘l) values for Darcy solution at values of ¢ and A.

Yih [4] Present results
{ A=0 A=1/3 A=1 A=0 A=1/3 A=1
0 0.4437 0.4437 0.4437 0.444 0.444 0.4443

0.1 0.4035 0.4044 0.4049 0.3925 0.3927 0.3927

0.2 0.3732 0.3769 0.3786 0.3698 0.3758 0.3815

0.3 0.355 0.3643 0.3697 0.353 0.3639 0.3756
0.4 0.3505 0.3686 0.3823 0.3509 0.3712 0.3954
0.5 0.3603 0.39 0.4227 0.3615 0.3929 0.4351

0.6 0.3832 0.4261 0.4854 0.3845 0.4283 0.4929

0.7 0.4173 0.4731 0.5599 0.4183 0.4744 0.5626

0.8 0.4602 0.5278 0.6385 0.4607 0.5284 0.639
0.9 0.5097 0.5878 0.7181 0.51 0.5881 0.7181
1 0.5642 0.6515 0.7979 0.5643 0.6516 0.798

This leads to increasing the local Nusselt number as the value of A increase as shown in
Figure (4). However, this increase is small for lower values of {. Furthermore, at a given
value of 1 as ¢ increases from O the local Nusselt number decreases, reaches a minimum value
at a certain value of ¢, and then increases again as ¢ approaches 1. This is due to the nature of
the local Nusselt number parameter versus the nonsimilarity parameter and does not imply
that the actual local Nusselt number value for mixed convection is smaller than that for pure
forced or pure free convection. This behavior will be repeated in the next figures of the local
Nusselt number.

f (< n)
0(<¢, 1)

10

Figure (2): Effect of 2 and £ on the velocity Figure (3): Effect of 2 and £ on the temperature
profile (M=R=Q=0). profile (M=R=Q=0).

Effect of M:
The presence of a magnetic field in an electrically conducting fluid has the effect of reducing
the flow due to the resulting resistance magnetic force, which is called the Lorentz force as
shown in Figure (5) which, in turn, reduces the rate of heat convection in the flow and this
appears in increasing the flow temperature as the magnetic field strength
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Figure (4): Effect of 2 and ¢on the local Nusselt Figure (5): Effect of M and ¢ on the velocity
number (M=R=Q=0). profile (1=1/3, R=0, Q=0).
1-0 T T T T T T T T T 0-70 T T T T
e M=0 0.65 - —=—M=0
o8\ M=1 ] 0.60 | —e—M=1
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Sof \ S
e ::< 0.35L ] / ]
2 U = .
0.2 ”::?-_‘\ \\\ ] 0.30 -\o o/.7 i
025~ " !
0.0 ! ! LT LTt 0.20 1 1 1 1
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n 4
Figure (6): Effect of M and ¢ on the temperature Figure (7): Effect of M and £ on the local Nusselt
profile (1=1/3, R=0, Q=0). number (1=1/3, R=0, Q=0).

increases as depicted in Figure (6). This results in decreasing the local Nusselt number as
shown in Figure (7). Moreover, it is noticed that the increase in the value of M do not lead to
appreciable decrease in the value of the local Nusselt number for large values of ¢.

Effect of R:

Figures (8) and (9) represents the effect of radiation parameter R on the velocity and
temperature profiles. It is observed that an increase in the radiation parameter results in
increasing velocity and temperature within the boundary layer. Thus, the effect of thermal
radiation is to increase the conductive moment in the boundary layer. Increasing the
temperature is due to in the presence of radiation the temperature is large. Figure (10)
illustrates that the increasing in the radiation parameter leads to an increase in the local
Nusselt number. This fact is expected since the value of the local Nusselt number is directly
proportional to the value of R in equation (16) and the local Nusselt number is found to be
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more sensitive for the radiation parameter than the dimensionless surface temperature gradient

(oG 0).

14 T T T T T T T T T T T
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Figure (8): Effect of R and ¢ on the velocity Figure (9): Effect of R and £ on the temperature
profile (1=1/3, M=0, Q=0). profile (1=1/3, M=0, Q=0).
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Figure (10): Effect of R and ¢'on the local Nusselt gjgyre (11): Effect of @ and ¢ on the velocity
number (2=1/3, M=0, Q=0). profile (1=1/3, M=0, R=0).
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Figure (12): Effect of Q and £ on the temperature  Figure (13): Effect of Q and £ on the local Nusselt
profile (1=1/3, M=0, R=0). number (1=1/3, M=0, R=0).
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Effect of Q:

When the heat is generated the buoyancy force increases which induces the flow rate to
increase giving rise to the increase in the velocity profiles, but, this increase is neglected in
natural convection region and very small in mixed convection region as shown in Figure (11).
Also, it is noticed that as Q increases the temperature profiles increases as illustrated in Figure
(12). This has the direct effect in decreasing the local Nusselt number with the increasing in
the value of Q as depicted in Figure (13). Also, it is noticed that for lower values of ¢ the
reduction in the value of the local Nusselt number is small as compared with large values of ¢.

Effect of R in the presence of M and Q:

Figures (14-16) presents the effects of R and ¢ on the velocity profiles, temperature profiles,
and local Nusselt number respectively in the presence of M and Q. From these figures it can
be observed that the behavior of the curves shown a similar trends to the behavior of the
curves in Figures (8-10) with the exception that, the reduction in the velocity of fluid in
Figure (14) as compared to Figure (8). The increase in the temperature of fluid in Figure (15)
as compared to Figure (9). This result in reduction in the values of the local Nusselt number in
Figure (16) as compared to its counterpart presented in Figure (10).

14 T T T T T T T T T 10 T T T T T T T T T
13 R=05 - N R=0.5
2f R=1.0 ; sl N R=1.0
11t —R=15 _ ] °r o —R=15 i
10 ¢=1 =05
. 09} 1
S osl 1 = o06f ¢=0 .
w07k 1w
N—r N ] ~— :1
“ gg ] > 04} ¢ -
04 1 AN
03 ] 02} NN i
0.2 ] D ""-:».\\\Z\
0.1 ] DTN BRI
0.0 0.0 1 1 1 FERTVRE Ty S SRR T T
0 0 1 2 3 4 5 6 7 8 9 10
n n
Figure (14): Effect of R and £ on the velocity  Figure (15): Effect of R and £ on the temperature
profile (1=1/3, M=1, Q=0.5). profile (1=1/3, M=1, Q=0.5).
0.60 . . : :
0.55 A —u—R=0.5 i
\ —e—R=1.0
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So3s| \ N \\ /A/
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0.0 0.2 04 06 0.8 1.0

¢
Figure (16): Effect of R and ¢ on the local Nusselt
number (1=1/3, M=1, @=0.5).
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Conclusions

From the previous study it can be concluded that:

1- As the wedge angle parameter A increases the local Nusselt number increases.

2- Increasing in the value of the square of the Hartmann number M leads to decreasing
the value of the local Nusselt number.

3- Increasing in the value of the radiation parameter R leads to an increase in the value of
the local Nusselt number.

4- Increasing in the value of the heat generation parameter Q leads to decreasing the
value of the local Nusselt number.

5- Increasing in the value of the radiation parameter R in the presence of the square of
the Hartmann number M and the heat generation parameter Q has a similar effect on the
local Nusselt number presented above in point 3 but with less values.
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