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ABSTRACT 
       In prosthetic finger development using electromyogram (EMG) data, a crucial challenge is accurately recognizing finger 

movements, thus requiring developed models that process EMG signals, facilitating independent finger gesture classification with 

high accuracy. To successfully classify an EMG signal, the feature selection should be carefully evaluated. However, many studies 

on EMG signal classification have employed a feature set that includes several redundant elements. In this study, several 

combinations of time domain features are employed for EMG signal reduction. In addition, two models of CNN namely: (CNN-1, 

CNN-2), DFNN, LSTM, and GRU architectures are proposed to provide high accuracy with minimal computational overhead and 

minimum parameters. Through careful model selection and hyperparameter optimization, the models’ effectiveness was enhanced. 

The models were evaluated based on accuracy, precision, recall, and F1-score metrics. Among the proposed models, CNN-1 

resulted in a good balance in terms of accuracy, computational time, and memory size, with an accuracy of 97.3 in 0.96 minutes 

with 890.73 KB size of memory. Furthermore, a comparison against earlier work confirmed the efficacy of the approach. 
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=========================================================================== 

1.  INTRODUCTION 

The essential components of our body are muscles, 

enabling a wide range of actions. Via muscle 

contraction and relaxation, produced myoelectric 

signals, allowing movement. These signals can be 

obtained using electrodes of EMG signals, to allow 

for the emulation of human movements, and are 

applicable in different fields [1]. EMG performs an 

essential function in clinical environments by 

monitoring muscle activity, providing 

neuromuscular disorders, and directing 

rehabilitation efforts. Moreover, the connection of 

EMG to technological fields and robotics has 

opened avenues for its application in areas such as 

human-computer interfaces, prosthetic 

development, gaming, and assistive technologies, 

demonstrating its versatility across multiple 

interdisciplinary fields [2]. Typically, collecting 

EMG data uses either surface electrodes, which are 

put on the skin, or embedded electrodes, which are 

implemented directly into the muscle tissue. Each 

type of electrode provides useful insights into 

muscle function and movement [3]. Indeed, surface 

EMG shows a significant noninvasive measure of 

muscle activity, which can be incredibly useful in 

robotic applications for controlling artificial organs 

[4]. EMG signals classification utilizing 

dependable and robust approaches is becoming 

increasingly popular in the field of biomedical 

engineering [5]. Three major cascaded modules 

must be meticulously managed to effectively 

classify and recognize EMG signals: data pre-

processing, feature extraction, and classification 

algorithms, with a focus on selecting the best 

feature vector. Feature extraction is critical in 

revealing useful information concealed within 

surface EMG signals (s EMG) while also removing 

useful elements and interferences. This step is 

necessary for improving the efficiency and 

accuracy of the subsequent classification stages [6]. 

Classification of EMG is important in interpreting 

wrist and elbow movements, grip, and finger 

movements, with considerable accuracy. Despite 
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these significant advancements, there is still a gap 

between laboratory-based results and actual clinical 

applications, which requires additional efforts to 

close. Ensuring that these breakthroughs can be 

efficiently and reliably applied in real-world 

clinical settings requires resolving some problems 

such as the durability of technology in varied 

surroundings, unpredictability in patient 

physiology, and user-specific customization [7]. 

The Advancement of machine learning approaches 

increases the ability to improve the precision and 

versatility of EMG-based classifications. Among 

the most common computational models in 

Artificial Intelligence (AI) employed for this 

purpose are Random Forest, k-nearest Neighbors 

(KNN), and deep learning approaches, particularly 

Artificial Neural Networks (ANN) and 

Convolution Neural Networks (CNNs). 

In a wide range of applications, Long Short-Term 

Memory Neural Networks (LSTMs) have recently 

had promising results. Recurrent Neural Networks 

(RNNs) specifically engineered for time series 

analysis, including EMG signals LSTMs are a type 

of RNN and address the vanishing gradient problem 

in classic recurrent neural networks, allowing for 

the effective capture of long-term dependencies. 

The gated architecture enables either retaining or 

forgetting information over time, making it ideal for 

replicating complicated temporal patterns found in 

EMG data. Over the years, LSTMs have proven 

their ability to learn from sequential data and 

extract essential features making them particularly 

powerful for applications like EMG signal 

categorization, which requires understanding the 

temporal dynamics of muscle activation and 

outstanding performance in a variety of disciplines. 

Experiments show that the LSTM prediction 

algorithm outperforms numerous traditional time 

series prediction algorithms [8]. 

Similarly, an RNN version called Gated Recurrent 

Units (GRUs) aims to prevent gradient vanishing, 

just as LSTM. In contrast to LSTM, GRU integrates 

input and forget gates into a signal update gate to 

optimize cell structure. This lowers processing 

complexity and, in certain cases, results in 

performance that is on par with or even better than 

LSTM for shorter training times. [9]. This 

adaptability highlights their relevance across 

multiple domains, making them valuable 

instruments for investigators seeking dependable 

and efficient time series analysis resolutions. For 

instance, GRU has several advantages to using 

efficiently and reliably applied in EMG signal 

categorization, including accuracy, responsiveness, 

and computing economy. 

 

 

 

1.1 Employed ML Algorithms Background 

1.1.1. Gradient Boosting 

Gradient Boosting (GB), is a supervised learning 

technique. Boosting is a type of ensemble algorithm 

where predictors are developed in sequence, not in 

isolation. In this method, each subsequent tree builds 

upon a revised version of the initial dataset. Boosting 

methods amalgamate the outputs from these 

sequential models using a method of weighted 

averaging to arrive at the final decision [10]. 

 

1.1.2. Random Forest 

A random forest is an ensemble of decision tree 

classifiers combined to create a collective model. 

Each decision tree within the forest is uniquely 

structured, as the decision splits at each node are made 

by selecting from a random subset of attributes. This 

process ensures that each tree develops distinct 

decision paths. Furthermore, each tree in the forest is 

associated with the same distribution, but they differ 

in the specifics because the values of the random 

vector used to choose the attributes and data samples 

are unique for each tree. The creation of random 

forests involves the techniques of bagging (bootstrap 

aggregating) and random attribute selection, 

enhancing the model’s ability to generalize across 

different data samples and reducing the likelihood of 

overfitting [11]. 

 

1.1.3. Support vector machines 

SVM, a type of machine learning method rooted in 

statistical learning theory, is widely used in pattern 

recognition. Its notable features include the absence 

of local minima, sparsity in solutions, and the 

utilization of kernel-induced feature spaces [12]. 

While most prior classifiers rely on hyperplanes to 

separate classes, SVM extends this concept to data 

that cannot be linearly separated by mapping 

predictors to a new, higher dimensional space 

where linear separation is possible. Typically, 

misclassifications occur only when an 

inappropriate kernel function is chosen or in cases 

with significantly different classes. From a 

computational standpoint, determining the optimal 

position for the decision plan becomes an 

optimization problem, aiding in the creation of 

linear boundaries through non-linear 

transformations [13]. 

 

1.1.4. Deep Feedforward Neural Network 

A feedforward neural network (FFNN) is a basic type 
of artificial neural network characterized by 
unidirectional information flow. Data moves linearly 
from the input layer, through hidden layers, to the 
output layer without cycles. In each layer Neurons are 
equipped with activation functions, applying weights 
to inputs by process data, allowing the network to 
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learn complex patterns during training [14]. 
Compared to traditional FFNNs, Deep Feedforward 
Neural Network (DFNN) has a larger number of 
hidden layers. This feature allowed DFNN to perform 
more complicated tasks by automatically learning and 
representing hierarchical features from input data. 

  

1.1.5. Convolution Neural Network 

Due to their strong data processing capabilities 
Convolutional Neural Networks or CNNs are widely 
employed in machine learning for tasks such as 
natural language processing and computer vision. 
CNNs contain convolution and pooling layers. 
Convolution layers use convolution kernels to interact 
with specific areas of input data, and their parameters 
change throughout training. Transform outputs using 
non-linear activation functions such as Rectified 
Linear Unit (ReLU) and hyperbolic tangent. After 
convolution layers come Pooling layers, which reduce 
dimensionality and summarize features using 
techniques such as max-pooling. CNN architectures 
often have various convolution and pooling layers, 
then fully connected layers, enabling capturing 
hierarchical patterns necessary for complicated 
recognition tasks and efficient data processing [15]. 

 

1.1.6. Recurrent Neural Network 

Another type of FFNN is a Recurrent Neural Network 

(RNN) that includes loops into its hidden layers. In the 
input, these loops give the model to process sequences 
of data while capturing temporal relationships. 
Additionally, Long Short-Term Memory (LSTM) 
networks address the problem that classic RNNs 
frequently struggle to understand long-term 
dependencies due to difficulties such as vanishing 
gradients by including techniques for modulating 
information flow in the hidden layer loops. This 
architecture enables LSTM networks to forget or keep 
states based on their relevance to the task, giving the 
network a form of long-term memory. As a result, in 
learning from sequence data, LSTM is generally more 
effective than traditional RNNs [14]. Gated Recurrent 
Units (GRUs) are another adaptation that simplifies 
the LSTM design by combining the forget and input 
gates into a signal update gate, as well as merging the 
cell state and hidden state, thereby streamlining the 
architecture and making it easier to train while still 
effectively capturing long-term dependencies. As a 
result, in general, LSTMs and GRUs outperform 
standard RNNs when learning from sequence data. 

This paper is organized as follows. Section 2, 
presents the related work. In Section 3, the 
proposed method is presented. Section 4 illustrates 
the results and comparisons with similar work. 
Finally, Section 5 concludes this paper. 

 

 

2. RELATED WORKS 

      Several researchers have developed multiple 

algorithms for feature extraction and pattern 

recognition to enhance the decoding of signals and 

achieve precise finger classification. For instance, 

Srinivasan et al [16] outlined how different finger 

flexions at rest are analyzed using EMG signals. Five 

different actions, including thumb flexion, index 

flexion, ring flexion, little flexion, and the rest are 

classified using the CNN model. Ten subjects were 

used to gather data and signal processing techniques 

with underwent preliminary processing to enhance 

signal clarity and filter out noise. This custom dataset 

demonstrates its potential for effective EMG signal 

classification achieved results of an accuracy of 72.5. 

Naseer et al [17] employed deep neural networks, 

LDA, SVM, and KNN to categorize EMG signals 

from five specific fingers across ten participants. 

using an eight-channel. Features are extracted from 

these signals via processing and the accuracy varied 

from 92.7 to 97.4. Bhattachargee et al [10] introduced 

a novel method designed to differentiate between 

EMG signals generated from ten distinct hand 

gestures and eight participants using the Gradient 

Boosting (GB) classifier. Both statistical and 

frequency features were extracted from the raw EMG 

data to simplify the signals and enhance their 

interpretability for the classification algorithm, it was 

applied to a practical EMG dataset to validate the 

effectiveness of this method, achieving 98.5 accuracy. 

Krishnan et al [18] proposed and evaluated various 

algorithms for classifying finger movements using 

EMG sensors, focused on eight distinct finger 

motions. For this classification task, two classifiers: 

Linear Discriminant Analysis (LDA) and SVM are 

utilized, each tested with different features. From the 

analysis of the results, it was found that LDA achieved 

the highest classification accuracy at 97.7. However, 

a notable drawback of LDA is its limited tractability 

for real-time applications. Conversely, SVM provided 

a more favorable balance between speed and 

accuracy, achieving an accuracy of 95.7. Tepe et al [1] 

employed a model that recognizes finger gestures by 

processing EMG signals. During preprocessing, the 

dataset of five distinct finger and resting hand gestures 

underwent filtering to identify segments where 

gestures occurred, followed by a windowing process. 

A classification rate of 95.8 was achieved utilizing the 

Simplified KNN method with the extracted waveform 

length feature within a 100 ms window and 50 

overlaps. Fındık et al [19] automatic creation and 

selection of EMG signal features were proposed, then 

developed a classification method based on a Random 

Forest algorithm. Ten distinct finger motions were 

recorded by two EMG sensors, which achieved an 

accuracy of 97.5.  Arteaga et al [20] proposed a 

primary approach for robot-assisted hand motion 

therapies with two initial objectives. Time and 

frequency features are used for recognizing six hand 
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gestures as inputs for multiple algorithms of machine 

learning. Specifically, compared the performance of 

ANN, Support Vector Machines (SVM), and KNN 

algorithms for classification effectiveness. 

Interpolation methods are used for each identified 

gesture to be transformed into a joint reference 

trajectory. The average correlation between actual 

tracked hand motion and EMG-based generated joint 

trajectories was notably high at 0.91. Moreover, 

statistical analysis of 14 different configurations of 

ANN, SVM, and KNN algorithms revealed that KNN 

and Weighted KNN algorithms performed well 

achieving the best classification accuracy of 98. 

Millar et al [12] employed neural networks with 

feature extraction, to achieve higher accuracy in 

classification. An LSTM network has been developed 

for this purpose and has successfully classified 12 

distinct finger movements with an accuracy of 90. 

Taghizadeh et al [4] utilized the advanced Fractional 

Fourier Transform (FrFT) technology to extract 

features from the EMG of eight subjects. Ten different 

finger movements were used to record these signals. 

Both the windowing and t-test approaches were used 

to optimize feature selection. KNN algorithm was 

used to classify these features, achieving an average 

classification accuracy of 98.12. Lee et al [21] 

presented a classifier for EMG-based hand and finger 

gestures. Ten healthy participants performed ten 

different hand and finger gestures collected from 

EMG    each channel extracted features with a six-

Time Domain (TD). These features were used to 

generate individual classifiers for each gesture using 

SVM, Random Forest (RF), ANN, and Logistic 

Regression (LR). This approach achieved results 

showing that ANN has the greatest mean accuracy at 

0.940, followed by the SVM at 0.876, the RF at 0.831, 

and the LR at 0.539. Tepe et al [22] enhanced 

classification accuracy, by achieving a reliable 

classification of sEMG data from finger movements. 

The authors incorporated gyroscopic signals, into the 

sEMG data analysis. Ten normal subjects were 

collected data, each performing 6 finger gestures 

thirty times. The EMG signals were preprocessed to 

extract features, and then the sequential forward 

feature selection method to identify the most effective 

feature set for classification. For classification, SVM, 

KNN, and multilayer ANN algorithms are utilized. 

Findings indicated that using features extracted solely 

from sEMG data, the ANN method achieved the best 

performance, with an accuracy of 94.40. When 

features from both sEMG and gyroscopic data were 

used, the performance improved to 96.30 with a 

significant p-value (<0.05). Kumar et al [23] 

described a Machine Learning (ML) framework 

designed to detect finger movements for a prosthetic 

hand. Given that the data generated from different 

movements across various fingers constitutes a 

multiclass classification problem, employed four ML-

based classifiers: KNN, decision tree, RF, and 

eXtreme Gradient Boosting (XGBoost). Experiments 

demonstrate that the XGBoost classifier surpassed 

other classifiers in terms of accuracy, making it the 

most effective tool for classifying complex finger 

movement within the context of prosthetic hand 

control. Sultana et al [24] focused on analyzing the 

accuracy, applicability, and efficiency of different 

machine learning algorithms for hand and finger 

gesture recognition. Sultana et al [25] disclosed a new 

method for analyzing and classifying 15 different 

finger movements from eight healthy individuals 

using surface EMG signals. This technique uses 

Welch power estimate for frequency analysis to 

enhance the classification process. Five TD features 

were extracted from these signals and employed to 

construct a machine-learning classifier. The 

preliminary experimental results demonstrated a 

classification accuracy of 92.30 for data obtained 

from eight channels. By concentrating on two 

prominent channels, this accuracy was raised to 94.15 

During the categorization process, employed ten-fold 

cross-validation to provide a trustworthy performance 

evaluation. Finally, 25 of the data points were set 

aside as test data, and the approach achieved an 

average accuracy of 92.35 

3. PROPOSED FRAMEWORK 

This section briefly presents employed machine 
learning algorithms and the proposed methods. 

3.1 Time Domain Feature Extraction 

TD features are adopted for the identification of finger 

recognition for this study. Time domain features are 

extracted directly from raw EMG signals as a function 

of time, without requiring any transformation. These 

features can be efficiently computed from the sampled 

time series, making the process faster and easier to 

implement, with a reduced computational burden. 

Common TD features include Mean Absolute Value 

(MAV), Root Mean Square (RMS), Zero Crossing 

(ZC), Standard Deviation (SD), minimum, maximum, 

Waveform Length (WL), Amplitude First Burst (AFB) 

and Willison AMPlitude (WAMP). These features 

capture various aspects of the signal’s amplitude, 

variability, and complexity directly from the time 

series data [24]. 

 

3.2 Features Extraction  

Directly inputting raw EMG signals as time sequences 
into a classifier can lead to decreased classification 
performance. This is because raw EMG signals 
encompass extensive sequences with high variability, 
randomness, and redundancy, which add complexity 
to the data [26]. Feature extraction is a technique that 
converts raw signals into a condensed set of attributes 
known as feature vectors. When appropriately chosen, 
these feature vectors retain essential and relevant 
information from the raw EMG signals, effectively 
representing the intended actions [24]. Generally, 
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features are extracted using the Time Domain (TD), 
Frequency Domain (FD), or Time-Frequency Domain 
(TFD). The Time Domain is particularly favored 
because it is fast, easy to implement, and effectively 
represents the transient states of gestures [21].  

In this study, numerous temporal domain aspects of 
the EMG signal were analyzed using deep learning 
algorithms such as CNN, DFNN, LSTM, and GRU 
classifiers. By combining features, we aim to improve 
the precision, correctness, and dependability of the 
outcomes. This approach enables us to improve the 
effectiveness of our classification system, resulting in 
more consistent results when applying EMG signal 
analysis. The results indicated the improved 
capabilities of our algorithms demonstrating their 
efficacy in EMG signal analysis. 

3.3 Proposed Methodology 

In this work, two proposed CNN models namely: 

CNN-1, and CNN-2, in addition to DFNN, LSTM, and 

GRU are used for EMG signal classification. 

Furthermore, Random Forest, SVM, and XGB are 

utilized to determine which feature achieved the best 

results to be used in the proposed algorithms. The 

features were SD, RMS, minimum, maximum, ZC, 

AAC, AFB, MAV, WL and WAMP. Different 

combination of features is selected to obtain the 

highest accuracy. Table 4 summarizes these features.  

3.3.1 Employed ML models 

As mentioned before, three machine learning models, 

namely Random Forest, SVM, and XGB, are used for 

EMG classification, with their hyperparameters tuned 

empirically to achieve optimal performance. The best 

hyperparameters for each ML algorithm are outlined 

in Table 1. A comparative analysis of these algorithms 

is conducted subsequently. The primary objective of 

using ML is to determine which features yield 

higher accuracy due to ML algorithms offering 

constant accuracy compared to DL algorithms. 
 

Table 1:  Show the best hyperparameters of 
ML algorithms 

 

Model Hyperparameters 

Random Forest n estimators = 22 
criterion =′ entropy′ 
random state = 0 

max depth = 62 

SVM C = 100 

gamma = 0.01 

decision_function_shape =′ ovo′ 

kernel =′ poly′ 

XGB – 
– 

 

3.3.2 CNN-1, CNN-2, DFNN, LSTM and GRU 

models 

In this study, we introduce several lightweight neural 

network models. The first model called CNN-1 is 

composed of two convolution layers with 16 and 32 
filters, respectively, each having a kernel size of three. 
This is followed by a single max pooling layer with a 
pool size of two. The architecture also includes two 
dense layers, each equipped with 64 neurons. The 
Rectified Linear Unit (ReLU) is used as the activation 
function. To minimize the risk of overfitting, a 
dropout rate of 0.5 is implemented. The final layer of 
the CNN model is a dense output layer with seven 
neurons, representing the number of classes, and 
employs a SoftMax activation function, Figure 3, a. 

The second proposed model (CNN-2) includes early 
stopping to prevent overfitting and enhance 
generalization to new, previously unknown data, as 
well as two convolutions' layers with 50 and 100 
filters, respectively, each with a kernel size of three. 
To decrease over-fitting, the first convolution layer is 
followed by a max pooling layer with a pool size of 
two and a dropout layer with a 0.2 rate. Followed by 
the convolution layer with a max-pooling of 128 
neurons activated by ReLU. The last layer is dense, 
containing seven neurons, and relates to the seven 
classes and uses the SoftMax activation function, 
Figure 3, b.  A new DFNN is the third model 
comprising 2 dense layers, each with 128 neurons, 
also using the ReLU activation function. A dropout 
layer of 0.5 rate is recommended to prevent 
overfitting. The output layer of this model includes 
seven neurons (indicative number of classes) with 
SoftMax activation function, Figure 3, c.  On the other 
hand, the suggested GRU model includes two GRU 
layers. It has one dense layer of 128 neurons and a 
dropout rate of 0.5 to prevent overfitting. The final 
layer has a dense layer with 7 neurons, that uses a 
SoftMax activation function for class prediction, 
Figure 3, d. Furthermore, our suggested Long Short-
Term Memory (LSTM) model features have two 
LSTM layers with 64 and 60 neurons. To address 
overfitting, this model incorporates a dropout rate of 
0.5. It includes a dense layer with 128 neurons and 
ends in an output layer with 7 neurons, each 
corresponding to a class, using a SoftMax activation 
function Figure 3, e. 

Table 3 summarizes the hyperparameters of the 
employed CNN-1, CNN-2, DFNN, GRU, and LSTM 
models. 

The database used in this work has a small volume. 

To address this problem, the random over-sampling 

method is used in DL algorithms. In this method, 

new samples are generated in the underrepresented 

classes by randomly sampling the currently 

available signals. 

 

4. RESULTS AND DISCUSSION 

4.1 Dataset 

In this work, we employed an EMG signal database 
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which is obtained from Kaggle platform. The data are 
collected using the MYO Thalamic bracelet, Figure 1. 
The data was gathered from 10 subjects across 20 
trials, employing three different wrist positions on the 
widest section of the forearm. Using MATLAB 
integrated with MYO SDK, the collection process 
involved subjects performing gestures with a one-
second pause, repeated for 20 to 30 trials [17], table 2 
shows these details. This dataset has finger movement 
of an index finger, middle finger, ring finger, little 
finger, thumb, rest, and victory gestures Figure 2. 
Eight electrodes were used and 10 features were 
extracted for each electrode. The features in this 
dataset are SD, RMS, minimum, maximum, ZC, 
AAC, AFB, MAV, WL, and WAMP. Figure 4 
displays the raw data and features extraction 
respectively. 

Table 2: Dataset information 
 

Specification Dataset 

Number of subjects 10 

Number of classes 7 

Number of features 10 

Number of electrodes 8 

Number of repetitions 20-30 

Time of performing 1-second pause 

Fig. 1: The MYO EMG Armband [27] 

4.2. Experimental Results 

All experiments are implemented using Python 
programming language in the Kaggle notebook to 
implement deep learning and machine learning 
algorithms with GPU P100. As mentioned earlier, 
we used an EMG dataset obtained from Kaggle[28]. 
This study assessed the effectiveness of several 
machine learning algorithms, namely XGB, RF, and 
SVM, using a progressively complex feature set 
derived from signal processing. The results of the 
classification process using a combination of 
parameters were much higher than the use of 
individual parameters. The combination of SD RMS 
+ minimum + maximum + ZC + AAC + AFB + 
MAV + WL yielded the highest results using XGB 
and RF with an accuracy of 96.2 and 95.9, 

respectively. Whereas SVM achieves the highest 
accuracy of 95.7 when combining SD, RMS, 
minimum, maximum, ZC, AAC, AFB, MAV, WL, 
and WAMP. Table 4 shows these results. This study 
also evaluated the performance of several neural 
network models on a classification task, assessing 
their accuracy, computational efficiency (measured 
in execution time), memory requirements (total 
parameters), and optimizer parameters in 
combination with SD, RMS, minimum, maximum, 
ZC, AAC, AFB, MAV and WL. The goal was to 
identify which model architecture offers the best 
balance of high accuracy and operational efficiency 
for real-time applications, including prosthetic limb 
control and gesture recognition systems, where 
precise muscle activity classification is essential. 

As shown in Table 5, and Figure 5, the proposed 
CNN-1 achieves a higher accuracy of approximately 
97.3. Additionally, satisfactory accuracy, loss curves, 
and a confusion matrix are presented in Figure 5 a and 
b, and Figure 6 respectively. Contrary to expectations, 
the alternative approach CNN-2 exhibited lower 
accuracy compared to the standard CNN, scoring at 
96.5. Despite its faster execution time it boasts the 
largest memory footprint among all models. 
Furthermore, Figure 5 c and d showcase satisfactory 
accuracy, and loss curves. 

Fig. 2: (index finger, middle finger, ring finger, little 
finger, thumb, rest gestures) [17], victory gesture
 Source [29].

 

http://www.kaggle.com/datasets/nccvector/electromyography-
http://www.kaggle.com/datasets/nccvector/electromyography-
http://www.kaggle.com/datasets/nccvector/electromyography-
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(a) CNN-1 (b) CNN-2 (c) DFNN model 

 

 

(d) GRU model (e) LSTM model 

 

Fig. 3: Models of CNN-1, CNN-2, DFNN, GRU, LSTM 

 

Table 3:  Hyperparameters of DL algorithms 
 

hyperparameters CNN-1 CNN-2 DFNN GRU LSTM 

Epoch 100 28 100 100 60 

Batch size 32 15 20 20 20 

Optimizer Adam Adam Adam Adam Adam 

Activation function Relu Relu Relu Relu Relu 

Learning rate 0.001 0.001 0.001 0.001 0.001 

Random state 42 0 42 42 42 
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Similarly, the proposed DFNN model attained 
slightly lower performance compared with the 
proposed CNN model with an accuracy of 96.2. 
Nevertheless, DFNN has better timing performance 
compared to CNN, Figures 5 e and f show the 
training accuracy and loss of the proposed DFNN.  

Moreover, the suggested GRU model out- 

outperformed the proposed DFNN and LSTM models 

with an accuracy of 96.8. On the other hand, Figure 5 

g and h, respectively, show the training accuracy and 

loss of the proposed GRU. The suggested LSTM 

model outperformed the suggested DFNN model with 

an accuracy of 96.4. On the other hand, LSTM 

performs better in terms of timing than GRU Figure 5 

i and j, show the training accuracy and loss of the 

proposed LSTM.  According to Table 6, improved 

precision, recall, and F1-score are evident across all 

algorithms. Likewise, Table 7 summarizes the best 

accuracy results of the proposed work compared with 

related works. 

 

4.3. Discussion  

This section reports the outcomes of our comparative 
analysis of various neural network models, including 
CNNs, DFNN, and recurrent neural networks (GRU 
and LSTM).  

The performance was assessed based on accuracy, 

computational time, memory usage, and optimizer 

parameters. Additionally, we discuss the 

hyperparameters set for each model to offer insights 

into the configuration that led to the observed 

performances. Contrasting to other studies, we 

investigated developing lightweight models for EMG 

classification. The models were configured with 

specific hyperparameters aimed at optimizing their 

performance. All models of DL used the Adam 

optimizer with varying learning rates and batch sizes. 

The consistency across most hyperparameters, such as 

the activation function (ReLU) and optimizer (Adam), 

allows for a more controlled comparison of 

architectural impacts on performance as shown in 

Table 3. 

A lightweight model is of high interest, particularly 
in scenarios where resource constraints are a 
concern. This makes this method applicable in edge 
devices and reduces both energy and computational 
efficiency. In addition, a slight performance 
improvement is recorded when using combinations 
of feature extraction. The results indicate that 
employing appropriate hyperparameters and layers 
leads to better performance in classifying EMG 
signals. As indicated in Table 7, the random forest 
achieves a high classification accuracy of 95.9. 
SVM followed RF with 95.7 accuracy surpassing 
the performance of [17] and [30] which achieved 
94.9. and 92.4 respectively. 

The proposed CNN-1, requires 228,026 parameters 
with a memory requirement of only 890.73 KB, 
despite this huge saving, the accuracy is still intact 
with a value of 97.3. CNN-2 achieved a slightly 
lower accuracy of 96.6 compared to the standard CNN 
and has the advantage of having the lowest execution 
time at 0.66 minutes. However, this model has a 
higher memory usage at 2590.72 KB due to its 
significantly larger number of parameters 663,782. 
This trade-off suggests that the CNN-2 is efficient in 
terms of speed but requires more memory. This model 
is ideal for applications where time efficiency is 
paramount, and memory usage can be accommodated. 
Both CNN models achieved higher accuracy than [31] 
which achieved 90.8. In contrast, The DFNN model, 
with 80,666 parameters and 315.11 KB of memory, 
achieved 96.2 accuracies in 0.78 minutes in contrast 
to [32] and [17] which attained an accuracy of 95. 
Additionally, the GRU model, which requires 182,426 
parameters and 712.61 KB of memory, achieved a 
slightly lower accuracy of 96.8 in 3.05 minutes 
compared to CNN-1. On the other hand, the LSTM 
model reached an accuracy of 96.4 with 221,738 
parameters and 866.17 KB of memory in 1.92 
minutes. The previous model required 60 epochs 
compared with [33] which achieved an accuracy of 
99.6 in ten hours operated on CPU with 100 epochs. 

In practical applications, lightweight neural network 
models are distinguished by their lower computational 
demands and reduced memory consumption. These 
attributes render them particularly suitable for 
integration into real-time systems, where efficiency 
and speed are paramount. Also, a lightweight model 
is crucial for EMG classification because it ensures 
real-time processing and efficient operation on 
devices with limited computational resources and 
battery life. This enhances portability and usability in 
applications such as prosthetics and wearable 
technology, i.e. a wearable bracelet has limited size 
and computation ability, and hence lightweight model 
is desired for EMG classification. 
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Table 4: Comparison of Machine Learning Model Performances Across Different Feature Sets 
 

Features XGB Random Forest SVM 

SD 94.7 95.4 51.5 

SD+RMS 95.1 94.3 76 

SD +RMS +minimum 94.3 94.7 81.6 

SD +RMS +minimum +maximum 95.1 94.4 85 

SD +RMS +minimum +maximum + 

ZC 

95.3 94.9 90.8 

SD +RMS +minimum +maximum+ 

ZC + AAC 

95.7 95.1 91.7 

SD+ RMS +minimum +maximum + 

ZC + AAC + AFB 

96 95.1 94.1 

SD +RMS +minimum +maximum+ 

ZC + AAC + AFB + MAV 

95.8 95.6 95 

SD +RMS +minimum +maximum+ 

ZC + AAC + AFB + MAV + WL 

96.2 95.9 95.1 

SD +RMS +minimum +maximum+ 

ZC + AAC + AFB + MAV + WL 

+ WAMP 

95.7 94.8 95.7 

 

Table 5: Comparative Analysis of Neural Network Models on Accuracy and Efficiency Metrics 
 

Algorithm accuracy time (m) total parameters memory size 

CNN-1 97.3 0.96 228,026 890.73 KB 

CNN-2 96.6 0.66 663,782       2590.72 KB 

DFNN 96.2 0.78 80,666 315.11 KB 

GRU 96.8 3.05 182,426 712.61 KB 

LSTM 96.4 1.92 221,738 866.17 KB 

Table 6: Performance Metrics Comparison 
Across Various Neural Networks 

 

Algorithm precision recall f1-score 

CNN-1 97.3 97.3 97.3 

CNN-2 97.3 97.3 97.3 

DFNN 96.2 96.2 96.2 

GRU 96.8 96.8 96.8 

LSTM 96.5 96.4 96.4 

XGB 96.2 96.2 96.2 

RF 95.9 95.9 95.9 

SVM 95.7 95.7 95.7 

  

Table 7: Results of proposed work compared 
with related works 

 

Algorithms 
Proposed work  

accuracy 
Related work 

CNN-1 97.3 90.8  [ 3 1 ]  

CNN-2 96.6        90.8  [ 3 1 ]  

GRU 96.8 – 

LSTM 96.4 99.6  [ 3 3 ]  

DFNN 96.2 95 [ 1 7 ] , [ 3 2 ]  

XGB 96.2 – 

RF 95.9               – 

SVM 95.7 
      94,9 [ 1 7 ]  
      92.4  [ 30 ]  
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(a) Original Raw data 

(b) Visualization of key features extracted from the raw data 

Fig. 4: Raw Data and Feature Extraction. The first subfigure represents the data from the first 
electrode, with subsequent subfigures representing the following electrodes. The x-axis represents samples 
per second while the y-axis indicates amplitude in millivolts.
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5. CONCLUSIONS 

This study has shown the practicality and efficacy 
of applying ML approaches for the classification of 
Electromyography (EMG) signals and significant 
differences were identified among classifiers. In 
this work, we evaluated the performance of various 
deep-learning algorithms. The CNN-1 model 
achieved the highest accuracy of 97.3% with a 
moderate computation time and memory usage, 
making it the most accurate model overall. CNN-2, 
while slightly less accurate 96.6%, had the fastest 
processing time but required the largest memory 
size. The DFNN, though slightly less accurate 
96.2%, was the most efficient in terms of both 
computation time and memory usage. The GRU 
model demonstrated good accuracy 96.8% but had 
the longest computation time, while the LSTM 
model showed a balance between accuracy 96.4% 
and moderate computation time. Among the 
traditional machine learning algorithms, XGB 
performed best with an accuracy of 96.2%, 
indicating that deep learning models, particularly 
CNN-1, are superior in terms of classification 
performance for EMG signals, albeit with a trade-
off in memory usage and computational efficiency. 
These results highlight the trade-offs between 
accuracy, computation time, parameter count, and 
memory usage in the selection of machine learning 
models for specific applications. Also, these results 
have broad applicability and can be effectively 
utilized in numerous electromyography (EMG) 
signal classification studies across various fields, 
including medical and engineering disciplines. 
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 مع استخلاص الميزات والتعلم الآلي EMGتطوير تصنيف حركة إصبع 

 
 عبدالل محمد عبد المطلب        رشا احمد ميسر   

    mohammmed.abdulmuttaleb@uoninevah.edu.iq  rasha.moysar2014@stu.uoninevah.edu.iq 

 
 العراق موصل،ال نينوى،جامعة  الالكترونيات،كلية هندسة  والمعلوماتية،هندسة الحاسوب 

 

 2024أكتوبر  27:تاريخ القبول  2024أكتوبر  7 استلم بصيغته المنقحة:   2024أغسطس  5 تاريخ الاستلام:

 

 الخلاصة 
، يتمثل التحدي الحاسم في التعرف بدقة على حركات الأصابع، وبالتالي تتطلب نماذج  (EMG) كهربية العضلفي تطوير الأصابع الاصطناعية باستخدام بيانات مخطط  

بنجاح، يجب تقييم اختيار الميزة بعناية. ومع ذلك، فقد   EMG ، وتسهل التصنيف المستقل لإيماءات الأصابع بدقة عالية. لتصنيف إشارةEMG مطورة تعالج إشارات
مجموعة ميزات تتضمن عدة عناصر زائدة عن الحاجة. في هذه الدراسة، يتم استخدام عدة مجموعات من   EMG استخدمت العديد من الدراسات حول تصنيف إشارة

لتوفير دقة  GRU ، وCNN   CNN-2) ، ,(CNN-1  DFNN  ،LSTM بالإضافة إلى ذلك، تم اقتراح نموذجين من معماريات .EMG ميزات المجال الزمني لتقليل إشارة
عزيز فعالية النماذج. تم تقييم النماذج الية مع الحد الأدنى من الحمل الحسابي والحد الأدنى من المعلمات. ومن خلال الاختيار الدقيق للنماذج وتحسين المعلمات الفائقة، تم تع

عن توازن جيد من حيث الدقة والوقت الحسابي وحجم الذاكرة،   CNN-1 ومن بين النماذج المقترحة، أسفرت  .F1 بناءً على مقاييس الدقة والضبط والاستدعاء ودرجة
 .كيلو بايت. علاوة على ذلك، أثبتت المقارنة مع أحدث الأعمال كفاءة الطريقة المقترحة  890.73دقيقة مع حجم ذاكرة   0.96في  97.3حيث بلغت دقة 

 

 

 : الكلمات المفتاحية
، الذاكرة الطويلة قصيرة    (DFNN) ، الشبكة العصبية ذات التغذية العميقة (CNN)  ، الشبكة العصبية التلافيفية(ML) ، التعلم الآلي(EMG) تخطيط كهربية العضل 

 (GRUs)  ، الوحدات المتكررة المسورة(LSTM)  المدى
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