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ABSTRACT 

One of the most important challenges facing U-Net architecture performance is the method design of its 

components and how to choose the suitable hardware computing device to deal with the training labelled datasets.  

Convolution is the most process that requires computations and memory costs, which is needs to minimize. Thus, one of 

the suitable selection is to change the type of the convolution. Other suggested solutions are to reduce the size of image,    

number of bits, and, stride value, in addition to number of filters, and image batches. Therefore, in this paper the roofline 

model will used as performance guide in analyzing the FLOPs and the memory bandwidth boundaries of a U-Net model 

with different configurations. The cost has been assessed with compared to the limitation of three computing devices, 

GPU230MX, GPU940MX and GPU2060rtx super. 128 × 128 image dataset has been used during the U-Net cost-

performance evaluation process. Based on the analysis, the evaluation results show that the solution that achieves a 

balance between memory and computations is to implement a U-Net model in parallel using RTX2060 super card with the 

configurations of batch size is 16, image size of 128×128, number of bits is 32, shared memory management. 
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1. INTRODUCTION  

The superiority of using deep learning 

models to achieve good and accurate estimation in 

one application is related to the size of the data and 

depends on the type of algorithm/model. However, 

many factors limit the performance of the 

algorithm implementation, thus implementation 

details must be taken into consideration, especially 

when the hardware used has limited resources. The 

algorithm is related with how to implement it and 

optimizing its components with least complexity. 

The implementation means running an algorithm 

with the suitable high performance computing 

(HPC). The floating-point throughput for the HPC, 

as well as the memory bandwidth of the DRAM 

chip, which determines the performance cost and 

depends on the manufacturing specification. 

However, it may not give a visualization of what 

the user can achieve.  

U-Net architecture[1] as a convolutional 

neural network (CNN) is one example that has 

been used in many applications with different 

configurations[2]. The basic structure of U-Net is 

composed of several types of layers with different 

operations, but still the convolution operation is 

the engine operation. However, the complex U-Net 

based CNN design and large amount of datasets 

with its labels will enhance the accuracy but it is 

demands memory storage space, while the reverse 

will be happen with small model size. So 

implementing U-Net variants on general-purpose 

processors (CPUs) may be inappropriate due to 

performance bottlenecks resulting from their lack 

of parallelism. Today, many hardware options give 

the users flexibility when chosen for training and 

testing. These options include GPUs [3][4], 

TPUs[5][6], FPGAs [7][8], heterogeneous[9] and 

servers[10]. 

There are another solutions but it that 

depend on user's efforts and proposals. Different 

frameworks based parallelism strategies are 

introduced to tackle memory limitation such as 

TensorFlow Large Model Support (TFLMS) and 

Mesh-TensorFlow[5][11].  

Other attempts are based on reducing the 

number of bits and quantizing the model size. A 

helpful solution is changing the type of 

convolution such as employing depthwise 
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separable convolution as an alternative to the 

traditional convolution [12]. Another suggestion is 

performing the convolution process with stride 

value more than 1 [13].  

Roofline model is one useful tool that is 

used in several works and studies and applied on 

different architectures[14][15][16][17][18] [19]. 

In this paper, a performance cost of U-Net 

architecture modeled with different parameters 

using a helpful roofline model. A Roofline model 

is employed as an efficient analyzing approach to 

alleviating the errors before developing the 

network models. It is can result an appropriate 

balance between different network configurations 

and selecting the suitable hardware environment.  

In addition to this introduction, the rest 

sections of this paper is divided as follows: section 

2 explains the Roofline models, section 3 describes 

the details of the U-Net structure, section 4 

analyzes the U-Net cost with different 

configurations. Finally, section 5 summarizes the 

paper with the most conclusions and presents 

suitable future work. 

 

2. ROOFLINE MODEL 

Roofline model is a theoretical pre-

programing step used to avoid errors that may 

appears during runtime execution such as out of 

memory (OOM). It is an abstract architectural 

model, which determines the performance 

throughput edges using each of the peak 

performance and the peak bandwidth. This model 

is usually used visually as a logarithmic plot of 

peak performance versus arithmetic intensity (AI) 

as illustrates in figure (1)[14].  

 
Fig. 1 Basic representation of roofline model 

 

The Peak performance is the number of 

arithmetic operations a computer performs per 

second on a given algorithm and expressed as an 

floating point operations per second (FLOPs/s). 

The flops/s is a useful measurement because the 

higher it is, the faster the algorithm can execute 

more data. The FLOPs/s is often related with the 

type of hardware, algorithm, and implementation. 

On the other hand, the Peak Bandwidth represents 

the fastest the processor can load data. It is 

measured in bytes/second.  

Arithmetic intensity (AI) is a measure of 

the number of operations performed per byte 

loaded or stored from memory. 

AI =
FLOPs

Read bytes + Write bytes
      (1) 

 

For any platform, the AI referred to as 

AImax and its calculation depends on its 

limitations. 

Roofline curves help you better 

understand how one application works on a given 

architecture.  

Therefore, the maximum theoretical 

performance of an algorithm/model using roofline 

is determined according to equation (2) 

   

P = min(peak performance, AI
× peak bandwidth)       (2) 

 

When the AI of an application is greater 

than AImax, then the maximum theoretical 

performance P that an application can achieve is 

limited by computational throughput(FLOPs/s) , 

on the contrary, the maximum performance P is a 

memory bound and the P will be equal to the 

multiplication of AI by peak bandwidth. The best 

use of the platform resources can be achieved at 

ridge point when the P is equal to AImax.  

 

3. U-NET MODEL 

In this section, typical forward pass of U-

Net model is implemented. The U-Net model 

consists of encoder and decoder, which are 

connected via short- long connections constructing 

a U-shaped as shown in figure (2).  

 

 
 

Fig. 2 2D U-Net architecture model 
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Both of the encoder and decoder have 

repeated levels of blocks, where each block 

includes two alternative 3x3 same convolutions 

and activation function of a type of a rectified 

linear unit (ReLU). In each level of the encoder, 

the spatial data is decreased by two using 2x2 max-

pool, while the number of filters are doubled by 

two, the reverse happens with the decoder, where 

the spatial data increases using nearest algorithm 

and the number of filters halves by two. The final 

layer applied a 1x1 convolution layer and a 

sigmoid activation function on each one of 64-

component feature vector through mapping to a 

four classes. 

 

4. PREDICTION RESULTS 

This section predicts the computational 

performance and memory bottlenecks of the U-Net 

model. U-Net is configured with 32-filters as 

starting point and works with an image size of 

128x128 to predict four class.  

The cost is measured and analyzed in 

compared to the three graphic processors 

integrated on three types of machines specified as 

in table 1. 

 

Table 1: Compute devices specifications 

Computing 

name 

GeForce 

230MX 

GeForce 

940MX 

GeForce 

RTX 2060 

super 

Architecture Pascal Maxwell Turing 

CUDA Driver 

Version 
11.1 10.2 11.2 

CUDA 

Capability 
6.1 5.0 7.5 

# 

Multiprocessors 
2 3 34 

# CUDA Cores 256 384 2176 

Clock frequency 1.531 1.242GHz 1.68GHz 

Memory 

bandwidth 

56.08 

GB/s 
14.4 GB/s 448 GB/s 

Single Precision 
FLOP/s 

784 
GFLOS 

953.472 
GFLOPS 

7.181 
TFLOPS 

Arithmetic 

intensity  
13.98 66.2 16 

 

The FLOPs and total memory access 

among different layer types is analyzed as shown 

in figures (3) and (4). One of the observations that 

needs to be taken into account that the convolution 

layer takes the largest FLOPs and memory 

complexities compared with the other operations. 

This due to addition and multiplication with large 

number of parameters. On the other hand, log scale 

is used to reduce the large disparity between the 

convolution and the cost of the rest computational 

layers.  

 
Fig. 3. The FLOPs of U-Net 

 

 
Fig. 4. The number of memory access in U-Net 

 

Figure (5) shows AI per layer compared 

with the used graphic cards. All smaller AI will be 

close to the memory bound while the reverse 

makes the layers will be computed bound. The 

smaller layer values will be neglected when 

estimation the computation of designing models. 

The observed issue is found at the convolution 

layer with input-output(128×128×32). 
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Fig. 5. The arithmetic intensity for each layer of the U-Net

As evident in the roofline model the 

arithmetic intensity is a significant factor to be 

consider. However, the complex U-Net will 

enhance the accuracy but it is demands memory 

storage space, while the reverse will be happen 

with small model size. Therefore, for an image size 

of 128×128 and the starting number of filters is 32, 

some estimations will be carry out with some 

tuning and solutions to tackle the computation and 

memory limitation as follows: 

 

4.1. Impact of convolution type 

Convolution is the essence linear operator 

in the convolutional layer which extracts the 

important features of input data channels by 

repeated sliding the learnable filter of stride 

number over an input data then applying element-

wise multiplication-accumulation outcome with 

corresponding window of input data and generate 

neurons that construct an output feature maps as 

illustrated in figure (6). 

 

 

Fig. 6 Standard convolution (SC) application in 

convolutional layer 

To note the performance(AI) per one 

layer with change convolution type, the most 

important types of convolutions[20] listed in table 

(2).  

Table 2: The arithmetic intensity of various 

structures of convolution 

Convolution  Arithmetic intensity 

Standard  
𝐵𝑀𝑁𝐷𝐾

2𝐷𝐹
2

𝐵𝐷𝐹
2(𝑀 + 𝑁) + 𝐷𝐾

2𝑀𝑁
 

Pointwise 
𝐵𝑀𝑁𝐷𝐹

2

𝐵𝐷𝐹
2(𝑀 + 𝑁) + 𝑀𝑁

 

Depthwise  
𝐵𝑀𝐷𝐾

2𝐷𝐹
2

2𝐵𝑀𝐷𝐹
2 + 𝐷𝐾

2𝑀
 

Separable 

depthwise  

𝐵𝑀𝑁𝐷𝐹
2

𝐵𝐷𝐹
2(𝑀 + 𝑁) + 𝑀𝑁

+
𝐵𝑀𝐷𝐾

2𝐷𝐹
2

2𝐵𝑀𝐷𝐹
2 + 𝐷𝐾

2𝑀
 

 

Figure(7) shows the behavior of the 

arithmetic intensity resulted for an input 

layer(128×128×32) and output layer(128×128×32) 

with a batch size is 1. Evidently, the (AI) is 

increases as got close to pointwise convolution. 

Since, the performance will be dominated by 

memory bandwidth rather than throughput 

computation according to a table (2). 

 
Fig. 7 Impact of convolution type on the 

performance(arithmetic intensity) 

4.2. Impact of stride number 

Figure (8) illustrates the accumulative 

arithmetic intensity when adjusting the step 

size(stride) for the second convolution layer by 2 
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and named the new network lightweight U-

Net(LWU-Net). It is clear that the stride 

summarized the data and as a result led to an 

increase in memory efficiency. 

 
Fig. 8 Impact of adjusting stride number on the 

performance(accumulative arithmetic intensity). 

 

The Roofline model mapping suggested 

networks only on the NVIDIA’s graphic cards of 

MX230, 940MX and RTX2060 SUPER and 

generating three results.  

The first result in figure (9) indicates that 

the networks are more bounded by the computing 

performance of the MX230 GPU processor 

architecture. 

 
Fig. 9 Roofline model for GPU MX230 super and 

accumulative arithmetic intensity for the suggested 

models with batch size 1. 

The second results in the figure(10), show 

that the networks lies within the memory bound 

region. This indicates that memory bandwidth is 

the crucial bottleneck for the proposed learning 

applications running on the 940MX processor.  

 
Fig. 10 Roofline model for GPU 940MX super and 

accumulative arithmetic intensity for the suggested 

models with batch size 1. 

The third result in the figure(11) show 

that the networks are computed bound.  

 

Fig. 11 Roofline model for GPU RTX2060 super 

and accumulative arithmetic intensity for the 

suggested models with batch size 1. 

Therefore, the 940MX can't be used. It is 

better to choose the machine that uses the 

RTX2060 super processor, as it is superior to the 

MX230 processor in terms of specifications and 

performance, as shown in the table (1) 

4.3. Impact of batch size 

Figure(12) shows the roofline model 

based on the accumulative arithmetic intensity 

when adjusting the batch size from 1 to 16. It can 

be seen that the larger the batch size, the higher the 

accumulative arithmetic intensity by a small 

percentage, thus avoiding the memory limitation 

problem. Another note, that the effect of changing 

the network structure on the accumulative 

arithmetic intensity is balanced as a result of 

changing both the number of computations as well 

as the number of times of memory access. In this 

state, only the 940MX GPU will be the best choice 

for implementing all the networks at all the batch 

sizes, but at the cost of taking a longer time. Thus, 

to reduce the consuming time, it is better to 
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implement networks in parallel and with a 16-

batches size. 

 

 
Fig. 12 Impact of adjusting batch size in the 2D 

Convolution kernel on the performance 

(accumulative arithmetic intensity). 

4.4. Impact of number of bits 

Figure(13) shows the roofline model 

based on the accumulative arithmetic intensity 

when changing the number of bits from 8 to 64 by 

a factor of 2.  

It is noticed that the higher the bits, the 

lower the accumulative arithmetic intensity and 

therefore it will approach the memory limits and 

therefore not all processors will be able to deal 

with the data bit size of 64. So, it is better to use 

the number of bits as 16 so that all networks can be 

implemented with all networks but at the expense 

of accuracy. In order to increase the accuracy and 

in a suitable time, a 32-bits can be used with the 

networks. 

 

 
Fig. 13 Impact of adjusting number of bits on the 

performance(accumulative arithmetic intensity) 

4.5. Impact of image size 

Figure(14) shows the roofline model 

based on the accumulative arithmetic intensity 

when increasing the image size from 128×128 to 

192×192 . It is noticed that the higher the image 

size, the lower the accumulative arithmetic 

intensity and therefore it will approach the memory 

limits and therefore not all processors will be able 

to deal with the image size of 192p. So, it is better 

to use an image of size 128p but the accuracy of all 

the networks may be affected depending on the 

network structure. To implement the networks 

with fast time, a RTX2060 super is the best 

processor due to containing on 2176 cores. 

 

 
Fig. 14 Impact of adjusting image size on the 

performance(accumulative arithmetic intensity) 

4.6. Impact of CUDA memory management 

Understanding the memory hierarchical 

properties provided by CUDA architecture helps in 

optimizing GPU kernels and thus alleviating the 

problem of limited memory resources. As shown 

in figure(15) CUDA architecture contains different 

classes of memories that are global, constant, 

shared, registers and local. Global memory is the 

simplest type of memory available in a GPU. This 

is the memory that the host usually accesses when 

transferring data to the device. Global memory 

provides the maximum storage size on a GPU 

approximately a few gigabytes, but it has the 

disadvantage of slow read and write operations 

(situated off-chip away from streaming 

multiprocessors).  

Constant memory is the fastest type of 

memory. It is called "constant" because writting to 

it is done only by host code. Therefore, it is useful 

when the kernel needs to access read-only data. 

The size of this type of memory is much smaller 

than the size of the global memory, only 64K [1]. 

In spite of it is yet off the chip, but so they can be 

accessed much faster than global memory due to 

they are cached on the chip.  

A small portion of shared memory(48-

163 KB) is allocated to each thread block  that can 

be read and written by that block alone. Because 

the shared memory is found on the chip, it is much 

faster to access, which makes it useful for storing 

intermediate values in the kernel or data that needs 

to be accessed repeatly. 

The GPU architecture as well contains 

registers and local memory that are unique to each 

thread. Registers provide storage for variables or 
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arrays defined by threads in the kernel, and are the 

fastest to access, but in a limited amount. Registers 

provide storage for variables or arrays defined by 

threads in the kernel, and are the fastest to access, 

but in a limited amount. The CUDA compiler 

specifies what data is put into registers and what 

data is passed to local memory. It is called local 

because of its domain, not its location. Local 

memory is off-chip, but it's local to each thread 

because it can only be accessed by specific threads, 

but it takes longer to get to it[21]. 

 

 

Fig. 15  Memory Hierarchy in the CUDA 

 

The type of memory is affect on the 

implementation[22], Figure (16) compares 

between Global, constant and shared as the most 

memory types for an input layer(128×128×32) and 

output layer(128×128×32) with a batch size is 1. 

The results shows that the arithmetic intensity 

increases when moving towards memory, as well 

as improving memory management and moving 

away from the problem of limited memory. 

 

 

Fig. 16 Impact of memory type on the 

performance(arithmetic intensity)  

 

5. CONCLUSION 

Accurate U-Net performance is a 

reflection of the complexity design and the training 

data size with labels. Thus it is necessary to use 

compatible platform for the implementing work, 

consequently datasets distribution and batch size 

are controlling by the performance. In this paper 

various structures of convolutional layer are 

estimated. Also, roofline model was exploited as 

throughput performance model to reduce the time 

that consumes by the developer in running U-Net 

architecture. The prediction results shown that 

RTX2060 super platform is more appropriate 

selection among the used platforms to achieves 

well balancing between flops and memory 

bandwidth. For future work, the roofline model 

will be extended to take into account another 

modeling parameters and variables and their 

effects e.g. on implementation time. 
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  الملخص

هي طريقة تصميم مكوناتها وكيفية اختيار جهاز الحوسبة المناسب للتعامل مع مجموعات البيانات  U-Netمن أهم التحديات التي تواجه أداء هندسة  
المناسبة هو تغيير نوع  ياراتالتدريبية المسمى. الالتفاف هو أكثر العمليات التي تتطلب الحسابات وتكاليف الذاكرة ، والتي يجب تقليلها. وبالتالي ، فإن أحد الاخت

حث بالحلول الأخرى المقترحة في تقليل حجم الصورة وعدد البتات وقيمة الخطوة بالإضافة إلى عدد المرشحات ودفُعات الصور. لذلك ، في هذا ال الالتواء. تتمثل
م التكلفة بتكوينات مختلفة. تم تقيي U-Netوحدود عرض النطاق الترددي للذاكرة لنموذج  FLOPsكدليل أداء في تحليل Roofline  ، سيتم استخدام نموذج

 128×  128. تم استخدام مجموعة بيانات صورة GPU2060rtx superو  GPU940MXو  GPU230MXبالمقارنة مع محدودية ثلاثة أجهزة حوسبة ، 
 U-Netات هو تنفيذ نموذج . بناءً على التحليل ، تظهر نتائج التقييم أن الحل الذي يحقق التوازن بين الذاكرة والحسابU-Netأثناء عملية تقييم أداء التكلفة في 
 ، إدارة الذاكرة المشتركة. 32، عدد البتات هو  128×  128، حجم الصورة  16مع تكوينات حجم الدفعة  RTX2060بالتوازي باستخدام بطاقة سوبر 
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