

Al-Rafidain Engineering Journal (AREJ) Vol.27, No.2, September 2022,pp.198-205

Al-Rafidain Engineering Journal (AREJ) Vol.27, No.2, September 2022,pp.198-205

U-Net Cost Analysis Using Roofline Model

 Ula T. Salim Shefa A. Dawwd Fakhrulddin H. Ali
 ula.tariq@uomosul.edu.iq shefa.dawwd@uomosul.edu.iq fhazaa@uomosul.edu.iq

Computer Engineering Department, Collage of Engineering, University of Mosul, Mosul, Iraq

 Received: 10/5/2022 Accepted: 4/6/2022

ABSTRACT

One of the most important challenges facing U-Net architecture performance is the method design of its

components and how to choose the suitable hardware computing device to deal with the training labelled datasets.

Convolution is the most process that requires computations and memory costs, which is needs to minimize. Thus, one of

the suitable selection is to change the type of the convolution. Other suggested solutions are to reduce the size of image,

number of bits, and, stride value, in addition to number of filters, and image batches. Therefore, in this paper the roofline

model will used as performance guide in analyzing the FLOPs and the memory bandwidth boundaries of a U-Net model

with different configurations. The cost has been assessed with compared to the limitation of three computing devices,

GPU230MX, GPU940MX and GPU2060rtx super. 128 × 128 image dataset has been used during the U-Net cost-

performance evaluation process. Based on the analysis, the evaluation results show that the solution that achieves a

balance between memory and computations is to implement a U-Net model in parallel using RTX2060 super card with the

configurations of batch size is 16, image size of 128×128, number of bits is 32, shared memory management.

Keywords:

Roofline model; U-Net; FLOPs; Memory bandwidth; Arithmetic intensity.

This is an open access article under the CC BY 4.0 license (http://creativecommons.org/licenses/by/4.0/).

https://rengj.mosuljournals.com
===

1. INTRODUCTION

The superiority of using deep learning

models to achieve good and accurate estimation in

one application is related to the size of the data and

depends on the type of algorithm/model. However,

many factors limit the performance of the

algorithm implementation, thus implementation

details must be taken into consideration, especially

when the hardware used has limited resources. The

algorithm is related with how to implement it and

optimizing its components with least complexity.

The implementation means running an algorithm

with the suitable high performance computing

(HPC). The floating-point throughput for the HPC,

as well as the memory bandwidth of the DRAM

chip, which determines the performance cost and

depends on the manufacturing specification.

However, it may not give a visualization of what

the user can achieve.

U-Net architecture[1] as a convolutional

neural network (CNN) is one example that has

been used in many applications with different

configurations[2]. The basic structure of U-Net is

composed of several types of layers with different

operations, but still the convolution operation is

the engine operation. However, the complex U-Net

based CNN design and large amount of datasets

with its labels will enhance the accuracy but it is

demands memory storage space, while the reverse

will be happen with small model size. So

implementing U-Net variants on general-purpose

processors (CPUs) may be inappropriate due to

performance bottlenecks resulting from their lack

of parallelism. Today, many hardware options give

the users flexibility when chosen for training and

testing. These options include GPUs [3][4],

TPUs[5][6], FPGAs [7][8], heterogeneous[9] and

servers[10].

There are another solutions but it that

depend on user's efforts and proposals. Different

frameworks based parallelism strategies are

introduced to tackle memory limitation such as

TensorFlow Large Model Support (TFLMS) and

Mesh-TensorFlow[5][11].

Other attempts are based on reducing the

number of bits and quantizing the model size. A

helpful solution is changing the type of

convolution such as employing depthwise

mailto:%20ula.tariq@uomosul.edu.iq
mailto:%20shefa.dawwd@
mailto:third3@ccu.edu.tw

 Ula T. Salim: U-Net Cost Analysis Using Roofline ….. 199

Al-Rafidain Engineering Journal (AREJ) Vol.27, No.2, September 2022,pp.198-205

separable convolution as an alternative to the

traditional convolution [12]. Another suggestion is

performing the convolution process with stride

value more than 1 [13].

Roofline model is one useful tool that is

used in several works and studies and applied on

different architectures[14][15][16][17][18] [19].

In this paper, a performance cost of U-Net

architecture modeled with different parameters

using a helpful roofline model. A Roofline model

is employed as an efficient analyzing approach to

alleviating the errors before developing the

network models. It is can result an appropriate

balance between different network configurations

and selecting the suitable hardware environment.

In addition to this introduction, the rest

sections of this paper is divided as follows: section

2 explains the Roofline models, section 3 describes

the details of the U-Net structure, section 4

analyzes the U-Net cost with different

configurations. Finally, section 5 summarizes the

paper with the most conclusions and presents

suitable future work.

2. ROOFLINE MODEL

Roofline model is a theoretical pre-

programing step used to avoid errors that may

appears during runtime execution such as out of

memory (OOM). It is an abstract architectural

model, which determines the performance

throughput edges using each of the peak

performance and the peak bandwidth. This model

is usually used visually as a logarithmic plot of

peak performance versus arithmetic intensity (AI)

as illustrates in figure (1)[14].

Fig. 1 Basic representation of roofline model

The Peak performance is the number of

arithmetic operations a computer performs per

second on a given algorithm and expressed as an

floating point operations per second (FLOPs/s).

The flops/s is a useful measurement because the

higher it is, the faster the algorithm can execute

more data. The FLOPs/s is often related with the

type of hardware, algorithm, and implementation.

On the other hand, the Peak Bandwidth represents

the fastest the processor can load data. It is

measured in bytes/second.

Arithmetic intensity (AI) is a measure of

the number of operations performed per byte

loaded or stored from memory.

AI =
FLOPs

Read bytes + Write bytes
 (1)

For any platform, the AI referred to as

AImax and its calculation depends on its

limitations.

Roofline curves help you better

understand how one application works on a given

architecture.

Therefore, the maximum theoretical

performance of an algorithm/model using roofline

is determined according to equation (2)

P = min(peak performance, AI
× peak bandwidth) (2)

When the AI of an application is greater

than AImax, then the maximum theoretical

performance P that an application can achieve is

limited by computational throughput(FLOPs/s) ,

on the contrary, the maximum performance P is a

memory bound and the P will be equal to the

multiplication of AI by peak bandwidth. The best

use of the platform resources can be achieved at

ridge point when the P is equal to AImax.

3. U-NET MODEL

In this section, typical forward pass of U-

Net model is implemented. The U-Net model

consists of encoder and decoder, which are

connected via short- long connections constructing

a U-shaped as shown in figure (2).

Fig. 2 2D U-Net architecture model

 200 Ula T. Salim: U-Net Cost Analysis Using Roofline …..

Al-Rafidain Engineering Journal (AREJ) Vol.27, No.2, September 2022,pp.198-205

Both of the encoder and decoder have

repeated levels of blocks, where each block

includes two alternative 3x3 same convolutions

and activation function of a type of a rectified

linear unit (ReLU). In each level of the encoder,

the spatial data is decreased by two using 2x2 max-

pool, while the number of filters are doubled by

two, the reverse happens with the decoder, where

the spatial data increases using nearest algorithm

and the number of filters halves by two. The final

layer applied a 1x1 convolution layer and a

sigmoid activation function on each one of 64-

component feature vector through mapping to a

four classes.

4. PREDICTION RESULTS

This section predicts the computational

performance and memory bottlenecks of the U-Net

model. U-Net is configured with 32-filters as

starting point and works with an image size of

128x128 to predict four class.

The cost is measured and analyzed in

compared to the three graphic processors

integrated on three types of machines specified as

in table 1.

Table 1: Compute devices specifications

Computing

name

GeForce

230MX

GeForce

940MX

GeForce

RTX 2060

super

Architecture Pascal Maxwell Turing

CUDA Driver

Version
11.1 10.2 11.2

CUDA

Capability
6.1 5.0 7.5

Multiprocessors
2 3 34

CUDA Cores 256 384 2176

Clock frequency 1.531 1.242GHz 1.68GHz

Memory

bandwidth

56.08

GB/s
14.4 GB/s 448 GB/s

Single Precision
FLOP/s

784
GFLOS

953.472
GFLOPS

7.181
TFLOPS

Arithmetic

intensity
13.98 66.2 16

The FLOPs and total memory access

among different layer types is analyzed as shown

in figures (3) and (4). One of the observations that

needs to be taken into account that the convolution

layer takes the largest FLOPs and memory

complexities compared with the other operations.

This due to addition and multiplication with large

number of parameters. On the other hand, log scale

is used to reduce the large disparity between the

convolution and the cost of the rest computational

layers.

Fig. 3. The FLOPs of U-Net

Fig. 4. The number of memory access in U-Net

Figure (5) shows AI per layer compared

with the used graphic cards. All smaller AI will be

close to the memory bound while the reverse

makes the layers will be computed bound. The

smaller layer values will be neglected when

estimation the computation of designing models.

The observed issue is found at the convolution

layer with input-output(128×128×32).

1
9

4
6

9
4 6

9
5

9
3

9
8

9
1

2

9
8

3
0

4
0

4
9

1
5

2
0

2
9

4
9

1
2

0

2
0

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1.00E+05

1.00E+06

1.00E+07

1.00E+08

1.00E+09

1.00E+10

Layer

lo
g

FL
O

P
s

Batch normalization Convolution

Maxpool Up-sampling

Concatenation Softmax

28%

47%

3%

6%

16%
0%

Batch normalization

Convolution

Maxpool

Up-sampling

Concatnation

Softmax

 Ula T. Salim: U-Net Cost Analysis Using Roofline ….. 201

Al-Rafidain Engineering Journal (AREJ) Vol.27, No.2, September 2022,pp.198-205

Fig. 5. The arithmetic intensity for each layer of the U-Net

As evident in the roofline model the

arithmetic intensity is a significant factor to be

consider. However, the complex U-Net will

enhance the accuracy but it is demands memory

storage space, while the reverse will be happen

with small model size. Therefore, for an image size

of 128×128 and the starting number of filters is 32,

some estimations will be carry out with some

tuning and solutions to tackle the computation and

memory limitation as follows:

4.1. Impact of convolution type

Convolution is the essence linear operator

in the convolutional layer which extracts the

important features of input data channels by

repeated sliding the learnable filter of stride

number over an input data then applying element-

wise multiplication-accumulation outcome with

corresponding window of input data and generate

neurons that construct an output feature maps as

illustrated in figure (6).

Fig. 6 Standard convolution (SC) application in

convolutional layer

To note the performance(AI) per one

layer with change convolution type, the most

important types of convolutions[20] listed in table

(2).

Table 2: The arithmetic intensity of various

structures of convolution

Convolution Arithmetic intensity

Standard
𝐵𝑀𝑁𝐷𝐾

2𝐷𝐹
2

𝐵𝐷𝐹
2(𝑀 + 𝑁) + 𝐷𝐾

2𝑀𝑁

Pointwise
𝐵𝑀𝑁𝐷𝐹

2

𝐵𝐷𝐹
2(𝑀 + 𝑁) + 𝑀𝑁

Depthwise
𝐵𝑀𝐷𝐾

2𝐷𝐹
2

2𝐵𝑀𝐷𝐹
2 + 𝐷𝐾

2𝑀

Separable

depthwise

𝐵𝑀𝑁𝐷𝐹
2

𝐵𝐷𝐹
2(𝑀 + 𝑁) + 𝑀𝑁

+
𝐵𝑀𝐷𝐾

2𝐷𝐹
2

2𝐵𝑀𝐷𝐹
2 + 𝐷𝐾

2𝑀

Figure(7) shows the behavior of the

arithmetic intensity resulted for an input

layer(128×128×32) and output layer(128×128×32)

with a batch size is 1. Evidently, the (AI) is

increases as got close to pointwise convolution.

Since, the performance will be dominated by

memory bandwidth rather than throughput

computation according to a table (2).

Fig. 7 Impact of convolution type on the

performance(arithmetic intensity)

4.2. Impact of stride number

Figure (8) illustrates the accumulative

arithmetic intensity when adjusting the step

size(stride) for the second convolution layer by 2

0.00

0.50

1.00

1.50

2.00

2.50

A
ri

th
m

et
ic

 in
te

n
si

ty
 in

FL

O
P

/b
yt

e

Layer

0
5

10
15
20
25
30
35
40

A
I i

n
 F

LO
P

/B
yt

e

Convolution type

 202 Ula T. Salim: U-Net Cost Analysis Using Roofline …..

Al-Rafidain Engineering Journal (AREJ) Vol.27, No.2, September 2022,pp.198-205

and named the new network lightweight U-

Net(LWU-Net). It is clear that the stride

summarized the data and as a result led to an

increase in memory efficiency.

Fig. 8 Impact of adjusting stride number on the

performance(accumulative arithmetic intensity).

The Roofline model mapping suggested

networks only on the NVIDIA’s graphic cards of

MX230, 940MX and RTX2060 SUPER and

generating three results.

The first result in figure (9) indicates that

the networks are more bounded by the computing

performance of the MX230 GPU processor

architecture.

Fig. 9 Roofline model for GPU MX230 super and

accumulative arithmetic intensity for the suggested

models with batch size 1.

The second results in the figure(10), show

that the networks lies within the memory bound

region. This indicates that memory bandwidth is

the crucial bottleneck for the proposed learning

applications running on the 940MX processor.

Fig. 10 Roofline model for GPU 940MX super and

accumulative arithmetic intensity for the suggested

models with batch size 1.

The third result in the figure(11) show

that the networks are computed bound.

Fig. 11 Roofline model for GPU RTX2060 super

and accumulative arithmetic intensity for the

suggested models with batch size 1.

Therefore, the 940MX can't be used. It is

better to choose the machine that uses the

RTX2060 super processor, as it is superior to the

MX230 processor in terms of specifications and

performance, as shown in the table (1)

4.3. Impact of batch size

Figure(12) shows the roofline model

based on the accumulative arithmetic intensity

when adjusting the batch size from 1 to 16. It can

be seen that the larger the batch size, the higher the

accumulative arithmetic intensity by a small

percentage, thus avoiding the memory limitation

problem. Another note, that the effect of changing

the network structure on the accumulative

arithmetic intensity is balanced as a result of

changing both the number of computations as well

as the number of times of memory access. In this

state, only the 940MX GPU will be the best choice

for implementing all the networks at all the batch

sizes, but at the cost of taking a longer time. Thus,

to reduce the consuming time, it is better to

0
10
20
30
40
50
60
70

A
Ic

 in
 f

FL
O

P
s/

b
yt

e

Networks

 Ula T. Salim: U-Net Cost Analysis Using Roofline ….. 203

Al-Rafidain Engineering Journal (AREJ) Vol.27, No.2, September 2022,pp.198-205

implement networks in parallel and with a 16-

batches size.

Fig. 12 Impact of adjusting batch size in the 2D

Convolution kernel on the performance

(accumulative arithmetic intensity).

4.4. Impact of number of bits

Figure(13) shows the roofline model

based on the accumulative arithmetic intensity

when changing the number of bits from 8 to 64 by

a factor of 2.

It is noticed that the higher the bits, the

lower the accumulative arithmetic intensity and

therefore it will approach the memory limits and

therefore not all processors will be able to deal

with the data bit size of 64. So, it is better to use

the number of bits as 16 so that all networks can be

implemented with all networks but at the expense

of accuracy. In order to increase the accuracy and

in a suitable time, a 32-bits can be used with the

networks.

Fig. 13 Impact of adjusting number of bits on the

performance(accumulative arithmetic intensity)

4.5. Impact of image size

Figure(14) shows the roofline model

based on the accumulative arithmetic intensity

when increasing the image size from 128×128 to

192×192 . It is noticed that the higher the image

size, the lower the accumulative arithmetic

intensity and therefore it will approach the memory

limits and therefore not all processors will be able

to deal with the image size of 192p. So, it is better

to use an image of size 128p but the accuracy of all

the networks may be affected depending on the

network structure. To implement the networks

with fast time, a RTX2060 super is the best

processor due to containing on 2176 cores.

Fig. 14 Impact of adjusting image size on the

performance(accumulative arithmetic intensity)

4.6. Impact of CUDA memory management

Understanding the memory hierarchical

properties provided by CUDA architecture helps in

optimizing GPU kernels and thus alleviating the

problem of limited memory resources. As shown

in figure(15) CUDA architecture contains different

classes of memories that are global, constant,

shared, registers and local. Global memory is the

simplest type of memory available in a GPU. This

is the memory that the host usually accesses when

transferring data to the device. Global memory

provides the maximum storage size on a GPU

approximately a few gigabytes, but it has the

disadvantage of slow read and write operations

(situated off-chip away from streaming

multiprocessors).

Constant memory is the fastest type of

memory. It is called "constant" because writting to

it is done only by host code. Therefore, it is useful

when the kernel needs to access read-only data.

The size of this type of memory is much smaller

than the size of the global memory, only 64K [1].

In spite of it is yet off the chip, but so they can be

accessed much faster than global memory due to

they are cached on the chip.

A small portion of shared memory(48-

163 KB) is allocated to each thread block that can

be read and written by that block alone. Because

the shared memory is found on the chip, it is much

faster to access, which makes it useful for storing

intermediate values in the kernel or data that needs

to be accessed repeatly.

The GPU architecture as well contains

registers and local memory that are unique to each

thread. Registers provide storage for variables or

0
10
20
30
40
50
60
70

A
Ic

 in
 F

LO
P

s/
b

yt
e

Network

Batch1

Batch2

Batch4

Batch8

Batch16

0

20

40

60

80

100

A
Ic

 in
 F

LO
P

s/
b

yt
e

Networks

8-bit

16-bit

32-bit

64-bit

0
10
20
30
40
50
60
70

A
Ic

 in
 F

LO
P

s/
b

yt
e

128p

192p

 204 Ula T. Salim: U-Net Cost Analysis Using Roofline …..

Al-Rafidain Engineering Journal (AREJ) Vol.27, No.2, September 2022,pp.198-205

arrays defined by threads in the kernel, and are the

fastest to access, but in a limited amount. Registers

provide storage for variables or arrays defined by

threads in the kernel, and are the fastest to access,

but in a limited amount. The CUDA compiler

specifies what data is put into registers and what

data is passed to local memory. It is called local

because of its domain, not its location. Local

memory is off-chip, but it's local to each thread

because it can only be accessed by specific threads,

but it takes longer to get to it[21].

Fig. 15 Memory Hierarchy in the CUDA

The type of memory is affect on the

implementation[22], Figure (16) compares

between Global, constant and shared as the most

memory types for an input layer(128×128×32) and

output layer(128×128×32) with a batch size is 1.

The results shows that the arithmetic intensity

increases when moving towards memory, as well

as improving memory management and moving

away from the problem of limited memory.

Fig. 16 Impact of memory type on the

performance(arithmetic intensity)

5. CONCLUSION

Accurate U-Net performance is a

reflection of the complexity design and the training

data size with labels. Thus it is necessary to use

compatible platform for the implementing work,

consequently datasets distribution and batch size

are controlling by the performance. In this paper

various structures of convolutional layer are

estimated. Also, roofline model was exploited as

throughput performance model to reduce the time

that consumes by the developer in running U-Net

architecture. The prediction results shown that

RTX2060 super platform is more appropriate

selection among the used platforms to achieves

well balancing between flops and memory

bandwidth. For future work, the roofline model

will be extended to take into account another

modeling parameters and variables and their

effects e.g. on implementation time.

REFERENCES
[1] O. Ronneberger, P. Fischer, and T. Brox, “U-net:

Convolutional networks for biomedical image

segmentation,” Lect. Notes Comput. Sci.

(including Subser. Lect. Notes Artif. Intell. Lect.

Notes Bioinformatics), vol. 9351, pp. 234–241,

May 2015, doi: 10.1007/978-3-319-24574-4_28.

[2] U. T. Salim, F. H. Ali, and S. A. Dawwd, “U-Net

Convolutional Networks Performance Based on

Software-Hardware Cooperation Parameters : A

Review,” International Journal of Computing and

Digital System, vol. 11, no. 1, 2022.

[3] Y. Oyama, N. Maruyama, N. Dryden, E. McCarthy,

P.Harrington, , J. Balewski, S. Matsuoka, P.

Nugent, and B. Van Essen,“The Case for Strong

Scaling in Deep Learning: Training Large 3D

CNNs with Hybrid Parallelism,” IEEE Trans.

Parallel Distrib. Syst., vol. 32, no. 7, pp. 1641–

1652, 2021, doi: 10.1109/TPDS.2020.3047974.

[4] D. Pati, C. Favart, P. Bahl, V. Soni, Y. C. Tsai, , M.

Potter, J. Guan, X. Dong, and V. R. Saripalli,

“Impact of Inference Accelerators on hardware

selection,” pp. 1–5, 2019, [Online]. Available:

http://arxiv.org/abs/1910.03060.

[5] L. Hou, Y. Cheng, N. Shazeer, N. Parmar, Y. Li, P.

Korfiatis, T. M. Drucker, D. J. Blezek, and X. Song,

“High Resolution Medical Image Analysis with

Spatial Partitioning,” pp. 15–19.

[6] J. Civit-masot, F. Luna-perejón, S. Vicente-díaz, J.

María, R. Corral, and A. Civit, “TPU Cloud-Based

Generalized U-Net for Eye Fundus Image

Segmentation,” vol. 7, pp. 142379–142387, 2019,

doi: 10.1109/ACCESS.2019.2944692.

[7] S. Liu and W. Luk, “Towards an efficient

accelerator for DNN-based remote sensing image

segmentation on FPGAs,” Proc. - 29th Int. Conf.

Field-Programmable Log. Appl. FPL 2019, pp.

187–193, 2019, doi: 10.1109/FPL.2019.00037.

[8] S. Liu, H. Fan, X. Niu, H. Ng, and Y. Chu,

“Optimizing CNN-based Segmentation with

Deeply Customized Convolutional and

Deconvolutional Architectures on FPGA,” vol. 1,

no. 1, 2018.

0

2

4

6

8

10

Global Constant Shared

A
I i

n
 F

LO
P

/B
yt

e

Memory

 Ula T. Salim: U-Net Cost Analysis Using Roofline ….. 205

Al-Rafidain Engineering Journal (AREJ) Vol.27, No.2, September 2022,pp.198-205

[9] B. K. Joardar, N. K. Jayakodi, J. R. Doppa, H. Li,

P. P. Pande, and K. Chakrabarty, “GRAMARCH:

A GPU-ReRAM based heterogeneous architecture

for neural image segmentation,” in 2020 Design,

Automation & Test in Europe Conference &

Exhibition (DATE), 2020, pp. 228–233.

[10] D. Ojika, B. Patel, G. A. Reina, T. Boyer, C.

Martin, and P. Shah, “Addressing the Memory

Bottleneck in AI Model Training,” pp. 3–5, 2020,

[Online]. Available:

http://arxiv.org/abs/2003.08732.

[11] H. Imai, S. Matzek, T. D. Le, and Y. Negishi, “Fast

and Accurate 3D Medical Image Segmentation

with Data-swapping Method,” pp. 1–13.

[12] B. Niepceron, A. Nait-sidi-moh, F. Grassia, B.

Niepceron, A. Nait-sidi-moh, and F. Grassia,

“Moving Medical Image Analysis to GPU

Embedded Systems : Application to Brain Tumor

Segmentation Moving Medical Image Analysis to

GPU Embedded Systems : Application to Brain

Tumor Segmentation,” 2020, doi:

10.1080/08839514.2020.1787678.

[13] N. Beheshti, “Squeeze U-Net : A Memory and

Energy Efficient Image Segmentation Network.”

[14] S. Williams, A. Waterman, and D. Patterson,

“Roofline: An insightful visual performance model

for multicore architectures,” Commun. ACM, vol.

52, no. 4, pp. 65–76, 2009, doi:

10.1145/1498765.1498785.

[15] B. Da Silva, A. Braeken, E. H. D’Hollander, and A.

Touhafi, “Performance and resource modeling for

FPGAs using high-level synthesis tools,” Adv.

Parallel Comput., vol. 25, pp. 523–531, 2014, doi:

10.3233/978-1-61499-381-0-523.

[16] A. Ilic, F. Pratas, and L. Sousa, “Beyond the

roofline: Cache-aware power and energy-efficiency

modeling for multi-cores,” IEEE Trans. Comput.,

vol. 66, no. 1, pp. 52–58, 2017, doi:

10.1109/TC.2016.2582151.

[17] J. Kwack, T. Applencourt, C. Bertoni, Y. Ghadar,

H. Zheng, C. Knight, and S. Parker, “Roofline-

based performance efficiency of hpc benchmarks

and applications on current generation of processor

architectures,” in 2019 Cray User Group Meeting,

2019, vol. 5.

[18] M. Hill and V. Janapa Reddi, “Gables: A roofline

model for mobile SoCs,” Proc. - 25th IEEE Int.

Symp. High Perform. Comput. Archit. HPCA

2019, pp. 317–330, 2019, doi:

10.1109/HPCA.2019.00047.

[19] C. Yang and L. Berkeley, “Hierarchical Roofline

Analysis on GPUs,” 2020.

[20] N. K. Jha and S. Mittal, “Modeling Data Reuse in

Deep Neural Networks by Taking Data-Types into

Cognizance,” IEEE Trans. Comput., vol. 70, no. 9,

pp. 1526–1538, 2021, doi:

10.1109/TC.2020.3015531.

[21] NVIDIA Corporation, CUDA C Programming

Guide - Version 4.2. 2012.

[22] B. Van Werkhoven, J. Maassen, H. E. Bal, and F.

J. Seinstra, “Optimizing convolution operations on

GPUs using adaptive tiling,” Futur. Gener.

Comput. Syst., vol. 30, no. 1, pp. 14–26, 2014, doi:

10.1016/j.future.2013.09.003.

 Roofline باستخدام نموذج U-Net تحليل كلفة

 الدين حامد علي فخر عبد الرحمن داؤد شفاء علا طارق سالم

 fhazaa@ uomosul.edu.iq shefa.dawwd@uomosul.edu.iq ula.tariq@uomosul.edu.iq

قسم هندسة الحاسوب -كلية الهندسة -جامعة الموصل

 الملخص

هي طريقة تصميم مكوناتها وكيفية اختيار جهاز الحوسبة المناسب للتعامل مع مجموعات البيانات U-Netمن أهم التحديات التي تواجه أداء هندسة
المناسبة هو تغيير نوع ياراتالتدريبية المسمى. الالتفاف هو أكثر العمليات التي تتطلب الحسابات وتكاليف الذاكرة ، والتي يجب تقليلها. وبالتالي ، فإن أحد الاخت

حث بالحلول الأخرى المقترحة في تقليل حجم الصورة وعدد البتات وقيمة الخطوة بالإضافة إلى عدد المرشحات ودفُعات الصور. لذلك ، في هذا ال الالتواء. تتمثل
م التكلفة بتكوينات مختلفة. تم تقيي U-Netوحدود عرض النطاق الترددي للذاكرة لنموذج FLOPsكدليل أداء في تحليل Roofline ، سيتم استخدام نموذج

 128× 128. تم استخدام مجموعة بيانات صورة GPU2060rtx superو GPU940MXو GPU230MXبالمقارنة مع محدودية ثلاثة أجهزة حوسبة ،
 U-Netات هو تنفيذ نموذج . بناءً على التحليل ، تظهر نتائج التقييم أن الحل الذي يحقق التوازن بين الذاكرة والحسابU-Netأثناء عملية تقييم أداء التكلفة في
 ، إدارة الذاكرة المشتركة. 32، عدد البتات هو 128× 128، حجم الصورة 16مع تكوينات حجم الدفعة RTX2060بالتوازي باستخدام بطاقة سوبر

 الكلمات الداله :

 .الكثافة الحسابية، عرض النطاق الترددي للذاكرة ، عمليات الفاصلة العائمةعدد ال ، Roofline ،U-Netنموذج

mailto:third3@ccu.edu.tw
mailto:firstl@umosul.edu.iq
mailto:%20shefa.dawwd@

