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ABSTRACT  
The voxelization process is an essential stage in three dimensional (3D) graphics pipeline. Its implementation 

should precede displaying objects in the pipeline. In this paper, different Voxelization algorithms are modified and 
parallelized to accelerate the operation of this stage. The 3D Digital Differential Analyzer (DDA) algorithm is used for 
line voxelization. This algorithm is utilized in triangle filling using the scan-line and the edge-function algorithms. The 
first one is designed to produce lines in parallel while the second can produce voxels. All these algorithms are 
parallelized using CUDA architecture and implemented on GPU processor. The actual implementation of these 
algorithms is examined and optimized according to the occupancy and block size metrics. The experimental results show 
that the acceleration amount of 3D DDA was about 4352x max compared to the OpenGL implementation, and the edge 

function implementation has been executed at a higher speed than the scan-line for object triangles voxelization.  
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1. INTRODUCTION 

Nowadays, as the continuous growth in 

3D graphics field, many theoretical solutions have 

been proposed to develop and accelerate the 

overall graphics pipeline and especially the scan 

conversion or rasterization stage. This stage 

converts a scene composed of triangle meshes 

into a regularly spaced grid points, it is a 

computation-intensive process,NVIDIA considers 

it as the crown jewel of the hardware graphics 
pipeline[1].  

The 3D extension of this process is 

calledvoxelizationwhich belongs to voxel that is 

analogous to thepixel in 2D image space. The 

voxelization is accomplished using a 3D scan 

conversion to generate a discrete surface of a 

voxelizedobject; it differs from scan conversion 

that concerns with filling 2D triangles or 2D 

projection of 3D triangles[2], their algorithms are 

more abundance in literature than a 3D scan 

conversion. Therefore we will focus on 
explaining 3D scan conversion only.In such 

processes the speed is required in 

generatingvoxels; some researches accelerated the 

operation using the standard Bresenham 

algorithm that has been adopted for a long 

time[3],[4],[5] and [6]. While other researches 

tried to use other algorithms like DDA [7],[8]and 

[9]. In[3], the early 3D version of Bresenham 

algorithm has been proposed,the algorithm is only 

implemented as Simulink using C programming 

and the assembly language. Articles [4] and [5] 

tried to accelerate the 3D Bresenham algorithm 
on FPGA platform, A speed of 68M pixels\sec is 

obtained using Spartan3E FPGA kit [4]. While 

the authors in [5] have used the Zynq-7000; their 

methods involve partitioning each  line into 

number of segments drawn simultaneously. 

However, they test their algorithm to scan few 

points and they got a good performance among 

other previous works.     

Another set of works accelerated the 

DDA algorithm for line scan conversion,A multi 

symmetry, in certain type of lines, is exploited to 
parallelize the scan conversion algorithms [7], 

where the line is divided into equal lengths 
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divisions, The algorithm was proposed to 

compute only the first division, and the other 
segments simply repeated from this pre-

computation. However, this work has been 

applied on certain line orientation (endpoints) and 

the overall performance depends on the 

probability of a line having multi symmetry.In 

2011, a 3D DDA algorithm has been implemented 

using FPGA[8]. The unit can produce pixels at a 

speed of 120M pixels\sec. assuming the loss of 

small time in computing the increment values. 

Also, some researches accelerated the 

ray traversal method that adopted the 3D DDA 
algorithm [9]. The authors used CUDA 

architecture on different GPU cards; they get 

significant acceleration. McGuire and Mars [9] 

presented an efficient implementation for screen 

space 3D ray-tracing, their implementation cost 

1.2 mille second to render 1920x1080 scene 

resolution on NVIDIA GeForce Titan.  

In terms of the polygon scan conversion; 

some literature has dealt with filling 2D polygons 

or the 2D projections of 3D polygons, while the 

works that dealt with 3D scan-conversion were 

relatively few. The parallelism in these works has 
been accomplished using the block-based scan 

conversion by partitioning the displayed area into 

blocks and processing them simultaneously on 

modern multi-core CPU [10],[11]. In [10] the 

space area of a triangle is partitioned into 8x8 

blocks then the 3D scan conversion is applied 

from the top left corner to the bottom. The 

researchers implemented the algorithm using 

Handel-C then translate it into VHDL code to 

verify the design using ModelSim. In this method 

some blocks would be empty making the 
corresponding threads remain idle many times. 

This problem was dealt with in [11] to reduce the 

effect of empty blocks and unnecessary 

calculations by combining two methods adaptive 

and bisector algorithms. They tested their 

implementation on Head and Statue models 

having 600,000 vertices with five different cases 

according to the distance from the camera, the 

maximum FPS obtained was about 564 frame\ 

sec.  

NVIDIA proposed an efficient CUDA-

based rendering model [1], where a complete 
software rasterization pipeline has been 

implemented on a GPU. They tiled the triangle 

primitive and made each warp rasterize a single 

triangle; the performance of which is a factor of 

2-8x compared to the hardware graphics pipeline. 

The 2D scan line method for triangle 

rasterization has been used in [12] and [13]. The 

researchers implemented the algorithm on FPGA, 

the maximum speed obtained in [12] is about 

50M pixel\sec., using the classical 2D scan-line 

algorithm. While the work in [13] has improved 
the 2D scan conversion by using the midpoint 

traversal which reduces the number of 

unnecessary points need to traverse, the 

performance results on different triangle 

orientations show the efficiency of this method in 

comparison with other methods, such as 

Bounding Box Traversal, Central-line Traversal, 

and Tiled Traversal.  

Although these works can apply 

rendering algorithms, the performance is still not 

satisfying compared to the power of the current 
GPUs and it needs more improvements especially 

after the graphics vendors began to provide 

programmability at different stages after they 

were fixed units on chips.However, more 

acceleration is needed to improve the 

performance by implementing the algorithm 

efficiently in parallel manner. 

In addition to this introduction, this 

paper contains four other sections. Section 2 

presents the theoretical bases of the work. The 

proposed parallel voxelizationis fully explained in 

section 3. The obtained results and their 
corresponding discussions are included in section 

4. Finally, section 5 concludes this paper.  

 

2. THE THEORETICAL BASES  

The voxelization takes advantage of the 

spatial or coherence property in an object has to 

be displayed. This property means that one part of 

the object is related to another part of that object 

in some way. So this relationship is used in voxel 

calculation to reduce the processing, where only 

the end vertices for line, or the three vertices for a 
triangle, are stored and the scan conversion can 

create the whole needed voxels for single scan 

line or between successive scan lines[12]. 

In this section, the related theory of a 

straight line and a triangle voxelization is 

introduced with their sequential algorithms.  

 

2.1  3D line voxelization 

There are two standard algorithms for 

3D line scan conversion, Bresenham and DDA 

algorithms[14].In this paper the DDA algorithm is 

presented. The implementation of itis done by 
linear interpolation of variables over an interval 

between start and endpoints. It needs a floating 

point operation in its computations. The 3D 

version is accomplished by considering the line 

segment whose voxels require to be generated in 

3D space, so for each voxel, the z value is 

calculated in addition to the x and y values, 

hence, the algorithm works in object space rather 

than in image space.  
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The sequential DDA scans a line vertex 

after anotherbased on calculating either dy or dx 
differences. It can work on lines with different 

slopes less or great than one as well as the 

positive or negative slops. Simply the line 

equation with slope is exploited here, as (xn=xn-

1+m) so, all the voxels that belong to this line 

should satisfy this equation. Same calculations are 

carried out to determine voxel positions at each 

coordinate then the same process is repeated 

along the line. Therefore three slopes should be 

calculated, one for each coordinate and one of 

them would be equal to one and the others may be 
less or great than one due to the line type. 

 

2.2Polygonvoxelization 
The 3D object is already stored as a 

polygons mesh, a triangle is considered as a 

fundamental primitive in most modern GPU cards 

since any polygon can be divided into many 

triangles[1],[14].So the triangle scan conversion 

is treated in this paper. The scan conversion of a 

triangle involves filling all area bounded by its 

edges and lie inside its boundaries. Therefore, this 

stage should be implemented carefully to render 
the whole object in 3D space in a correct manner. 

This process can be categorized into two main 

approaches;scan-line and edge function 

approaches[12],[14], both are based on the 

previous line scan conversion algorithms. 

 

2.2.1 Scan-line algorithm 

This algorithm is considered a classical 

version that is still in use, since it offers an 

efficient triangle traversal by walking through the 

triangle from top to bottom and digitalizes 
successive horizontal line by another. Each line is 

called scan-line, and the internal part of a scan 

line is called span. This method is also called 

edge walking or fast scan conversion algorithm. 

Fig.1 shows two successive spans of a triangle 

where each one has a constant y value.  
 

 
Fig. 1 A polygon scan conversion (up to down) k: is a 

scan line number 

 

The 3D scan-line is extended from the 

2D version, where at each span the z dimension is 

also interpolated. We can explain this method by 

partitioning it into four steps. 
 

i) Vertices sorting 

Firstly the triangle vertices (v1, v2, v3) 

should be sorted according to its y values from 
least to most in a clockwise direction; this is to 

distinguish the top, middle and bottom vertices. 

The sorting of the vertices is made independently 

of the z values and it sorts the triangle sides 

themselves. 

 

ii) Slopes calculation 

After the triangle edges are sorted along 

the y-axis, the slope of each triangle edge can be 

found from the line formula by[14]: 
  

    
           

           
                                       

    
           

           
                                        

    
           

           
                                        

 

Where:    i :is the triangle vertex counter from 0 to 

2. 

There are three slopes should be calculated for 

three edges, these slopes are needed to voxelize 
the triangle sides, and thereby the whole span 

points, where these intersections represent the 

start and end points of the span. The slope 

transition is needed when the span reaches to v2 

vertex, as in Fig.1, where edge 1 should be 

dispatched by edge 2 and its slopes will be 

considered in span end calculations. 

In 3D scan conversion, the z increment should be 

calculated for each span line using the 

equation[14] 

 

     
                       

                       
    

 

iii) Finding the scan line intersection 

To move down from span to another, we 

should find the intersection of the scan line with 

triangle boundaries. The (x,y,z) coordinate can be 

calculated based on the previous slope values. 

The change in y coordinate between two 

successive spans is one step as the equation: 

 
                                                         

 

While the new intersection x and z 

values are determined by the x, y intersection 

values of the preceding span xk, zk as[14]: 

 

                  
 

   
                               

                  
 

   
                                

 

Where each successive (x, y) intercept 

can thus be calculated by adding the inverse of 

v1 yk+1 
yk 

yn 

v2 

v3 

edge 3 

edge1 

edge2 
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the slope, noting that the slope may be negative or 

positive depending on which is greater ( xk+1 or xk 
) or ( zk+1 or zk ). So each time we move to a new 

span, the x and z values can be incremented or 

decremented based on the reciprocal value of the 

slope.  

In Fig.2, one can note that the middle 

span, which passes through the middle vertexv2, 

can separate the triangle into two parts top and 

bottom. So a slope transition is needed at this 

span where one of the slopes should be changed 

making the procedure having two different loops, 

each of them with different span number 
according to the current active edges. Two cases 

are produced here according to the orientation of 

the triangle where the position of the second 

vertex v2 may be to the left or to the right of other 

vertices as shown in Fig.2. 

Simply, the number of spans can be 

represented by the difference between the y-

coordinates (dy) of the two ends of a triangle 

edge[2],[14]: 

                                              
 

Here, only the two smallest dy of a 

triangle are needed, where the third one represents 

the sum of these two differences. 

 

                                              
 

Whenever the counter value for 

calculating the spans of the first part becomes 

equal to or greater than dy, we switch to another 

counter and one of the edges is removed from the 

active edges and replaced by another. Thereby, 
we increment or decrement the current x and z 

intersection depending on the sign of the new 

slopes and increment the y coordinate by one, 

then the counter is increased by one till reaching 

the second dy spans.  

 

 
Fig.2 Span line intersections 

 

iv) Filling the span 

After finding the intersections of each 

scan-line with the current active triangle sides, the 

end and start points of the span are being 

provided and here, we further decompose the span 

into pixels using one of line scan conversion 

algorithms to fill in the span. The 3D DDA is 
used in this paper,it produces pixels which are 

filled in between the pairs of intersections 

horizontally from left to right. 

 

2.2 Edge function testing 

Edge function is a linear function that 

can be used to classify points on a plane 

according to its location, showing if the voxel lies 

above, on, or below the vector. Some sources 

refer to this method as a half-space function since 

it divides the region into two halves based on the 
considered edge, and others refer to it as a 

bounding box since it checks all the voxels in the 

bounded box surrounding a triangle [11],[13]. 

An edge function is defined by 

computing the perpendicular dot product 

PerpDotbetween a vector and the perpendicular 

one of the other vector and passes through the 

tested point  [13].  

Fig.3 explains this process where the 

edge function is the implicit equation,       
   , of the vector through the two points A and 
B.  

.  

 

 
Fig.3 Edge function representation 

 

So the PerpDot product can be applied 

on    ̅̅ ̅̅ ̅ and    ̅̅ ̅̅ ̅ as followed[13]:  
 

           ̅̅ ̅̅    ̅̅ ̅̅     ̅̅ ̅̅     ̅̅ ̅̅                                   
 

Where P(x,y) is the tested point and the 
perpendicular vector on AB is shown as the 

normal  ̅ which has an inverse slope of AB, 

therefore the final edge function can be written 

as[11]:   
 

                    
                                    

 

So the function yields three possible outputs 

based on the input point P(x, y):  

 

- E(x, y) = 0 if point P is on the line. 

- E(x, y)> 0 if point P is above the line in the 

same direction of the normal. 

- E(x, y)< 0 if point P is below the line in 
the opposite side of the normal. 

 

 

Span_max 

Span_min 

Span_min 

dx2 

V1 

V3 

V2 

dx3 

dx1 

Span_max 

V2 

V3 

dx3 

dx1 

dx2 

V1 
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In triangle rasterization, there are several 

mathematical approaches to find the inner pixels 
and they all investigate the question of how to 

represent edges. Exploiting the edge function in a 

triangle rasterization involves checking each point 

inside the triangle against all its three edges as 

shown in Fig.4. 

 
Fig.4 Triangle edge equations 

 

Therefore, for each point there should be 

three edge equations. In general, a pixel could be 

inside the triangle if and only if the results of all 
the three functions are greater or equal than zero, 

otherwise, the pixel lies outside the triangle.   

Surely, the method would not be 

effectual if all the pixels in the screen are tested, 

so the bounded box is used to limit the tested 

voxels as shown in Fig.4. This box is specified 

according to the minimum and maximum triangle 

coordinates values. 

However, the above rasterizer requires 

many calculations for each per-pixel, three times 

of (three multiplications and eight subtractions as 

a 3D space). So optimization has been added to 
this approach [13] using the DDA method to find 

the neighboring pixels; this is to reduce the 

computations of the three coordinates. Thus, once 

the edge functions have been created and 

evaluated for a sample point, any of the four 

neighboring pixels can be evaluated using simple 

additions/subtractions operation. Another 

optimization on this algorithm has been proposed 

in [15] using the tile-based approach which is 

considered in some modern graphics card. 

 

3. THE IMPLEMENTATION OF PARALLEL 

VOXELIZATION 

In many 3D scene fillings, the process is 

performed voxel by voxel. Although mapping the 

vertex and the process of line traversal seem to be 

simple, the scan conversion performance largely 

depends on the implemented algorithm and its 

optimization level. It has a large number of 

individual visibility tests between the voxel and a 

triangle, so the algorithm iterations having many 

calculations need to be executed many times. 

Such algorithm requires more efforts to make it 
parallel and optimized at the same time, taking 

the possibilities of the GPU hardware into 

account and how to adapt it onto CUDA 

(Compute Unified Device Architecture) 
programming model. In this section, we intend to 

explore how far our voxelization implementation 

can be achieved in terms of performance on 

CUDA.   

 

3.1 GPU-based line segment algorithm 

With a parallel computer, we can find 

voxel positions along a line path simultaneously 

by separating the computations among the 

available streaming processors. This section 

shows how to modify scan conversion methods 
for 3D lines so that they can run on a parallel 

computer. 

As discussed previously, there are two 

main serial algorithms for straight-line scan 

converting: DDA and Bresenham. The 

Bresenham’s algorithm has become common 

because of its integer arithmetic operations since 

oldest processors could not easily do floating-

point arithmetic. There were no floating-point 

math and no multiply\divide. This was thousands 

of times slower than doing simple integer 

arithmetic [9].  
Nowadays, all processors (GPUs or even 

CPUs) can do SIMD (Single Instruction Multiple 

Data) operations and they use floating-point 

vector extensions. The current GPUs support both 

integer and floating-point operations, and they 

consume the same number of clock cycles for 

both integer and float operation [16]. Hence, the 

obstacles of unusing the DDA algorithm have 

vanished, so we expected that the DDA is more 

suitable for parallel implementation than the 

Bresenham algorithm.  
The rasterization of a 3D line was not 

easy to implement as initially thought. Firstly, we 

tried to parallelize the Bresenham algorithm, but 

we found that this algorithm has more branches 

and dependency in its instructions. The creation 

of new voxel depends on the error value which is 

accumulated from other preceding voxel 

calculation. It changes under the condition if it is 

greater or less than zero, therefore, its 

implementation is difficult as SIMD. This 

difficulty can be dissolved by partitioning the line 

into many segments having the same slope and 
hence each thread could tackle one of these 

segments. However, this solution increases the 

sequential execution and costs more calculations 

in each thread. Many researches have been 

proposed to parallelize the Bresenham 

algorithm[4], but their solution lacks for physical 

hardware or their implementation deals with small 

data set [6].  
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Indeed, we exploited the benefits of 

parallelization in efficient 
implementation,wherethe problem that can be 

divided into independent sub-problems is more 

suitable.Thereby, we prefer the (DDA) algorithm 

for the implementation on GPU. The arithmetic 

operations in the DDA are more suited to the 

GPU because the inner loop, as presented 

previously, contains independent instructions and 

need less modification than Bresenham to be 

parallelized and properly hardware-implemented 

and scalable.  

The parallel 3D DDA algorithm is 
designed by forming a Multiply-Add operation 

(FMUL) in its inner loop as follows: the start-end 

voxel is used in all processors instead of 

calculating the previous voxel at each step, since 

in parallel implementation recalculating the value 

is easier and less expensive than rereading it from 

global memory. The pseudo code of the 

implementedalgorithm is listedin Fig.5. 

 
 

Procedure of parallel 3D Line-voxelization 

BEGIN 

blockId = blockIdx.x + blockIdx.y * 

gridDim.x; 

i = blockId * (blockDim.x * 

blockDim.y) + (threadIdx.y * 

blockDim.x) + threadIdx.x;    

 

Length = abs(x2 – x1)  

if (abs(y2 – y1) > Length) Length = 

abs(y2 – y1) 

incx=(x2 – x1) / Length  

incy=(y2 – y1) / Length 

incz=(z2 – z1) / Length 

For each thread (i) 

Begin 

  x = x0 + incx*i 

  y = y0 + incy*i  

  z = z0 + incz*i 

store_voxel_float4(x, y ,z, 1.0f) 

End 

END 
 

Fig.5 The pseudo code for parallel 3D-line voxelization 

 

The indexing configuration of grid and 

block entries is architected using the built-in 

variables threadIdx and blockDimin the CUDA 

runtime, where the coordinate of each thread can 

be accessed within kernel function by the 

variablei. 
 

3.2 GPU-based 3D triangle voxelization 

The scan-line and edge-function 

algorithms are optimized based on the parallel 

implementation; both are executed for triangle 

primitive. In the sequential procedure of those 

algorithms we found that there is no dependency 

in its instructions and thereby their procedure can 

be parallelized with some modifications. The 

performance of the filling process largely depends 

on the executed algorithm and its optimization 
level. Different configurations are tested in this 

paper to parallelize these algorithms; each of 

them is discussed as follow: 

 

3.2.1 Parallel scan-line algorithm 

The parallelization of this algorithm is 

more complex than the edge-function since it has 

two nested for-loop. So, it can’t be parallelized 

for each pixel, instead, we implemented the 

parallelism for each scan-line. Each thread is 

responsible for drawing single span but in this 
case a sequential loop exists for scanning the 

horizontal line, and here the largest span will 

depend on the orientation of a triangle. This can 

be inefficient for large triangle size where the 

span will be long and which will increase the 

consumed time to rasterize it. Actually, in real 

implementation and for high resolution, all the 

triangles of an object are of being with small 

sizes. Locality coherence states that (the triangle 

size decreases as the number of triangles in a 

scene increases). Therefore, this algorithm is still 

being in use especially in low end consumer 
devices like handhelds.   

The following pseudo-code in Fig.6 

illustrates the parallel triangle voxelization,  
 

Procedure parallelvoxelizationscan-line 

algorithm 

BEGIN 

Enter the clockwise vertices of the 

Triangle 

blockId = blockIdx.x + blockIdx.y * 

gridDim.x; 

i = blockId * (blockDim.x * 

blockDim.y) + (threadIdx.y * 

blockDim.x) + threadIdx.x;    

 

For each thread (i)<dy1  

Begin 

//compute the intersections of the 

current scan line (spani.x,spani.z) 

with the left and right sides of 

the triangle; 

 

span_min=span_max=v; 

 

span_min.x=v.x+ 1\dx1*i 

span_min.z=v.z + 1\dz1*i 

span_max.x=v.x + 1\dx2*i 

span_max.z=v.z + 1\dz2*i 

 

zinc = (span_max.z – span_min.z)/( 

span_max.x - span_min.x); 

 

for( ; span_min.x<=span_max.x ; 

span_min.x+=1) 

store_voxel_float4(span_min.x,v.y + i  

, span_min.z +  zinc*i, 1.0f)  

End 

END  
 

Fig.6 The Pseudo code for parallel 3D-triangle 
voxelization using scan-line approach 



Sura Nawfal Alrawy  :Voxelization Parallelism Using CUDA Architecture 7 

Al-Rafidain Engineering Journal (AREJ)                                               Vol.25, No.1, June 2020, pp. 1-11 
 

 

The important issue that should be 

mentioned here is that there are two 

configurations after sorting the sides of the 

triangle, as previously shown in Fig.2, one of 

them if the middle vertex is on the right and the 

other when it is on the left. A simple condition is 

added to the algorithm to distinguish these two 

configurations where the dx values of the active 

sides are checked to begin the span with the 

smallest dx and end it with the largest one. The 

procedure below takes one case when dx1 is 
smaller than dx2. One part is introduced below if 

one of the triangle sides is a horizontal line or 

parallel to the scan line.   
 

3.2.2 Parallel edge-function algorithm 

The edge function implementation is 

accomplished by distributing the voxels among 

the available threads. It is more suitable for 

parallel implementation than the previous 
approach, since it can be applied on each voxel as 

SIMD, but in such a case more threads are 

needed, than the previous algorithm, due to the 

bounded box, where only the voxels inside the 

triangle are drawn and those voxels outside the 

triangle and inside the box aren’t drawn although 

they seize threads and consume an extra 

processing time.    

 

The following pseudo code in Fig.7 

explaines the implementation of this 

algorithm,where the threads configuration is 
arranged as (x,y,z) so, each thread coordinate 

should be compared in the three edge functions, 

that are extended here as a 3D space, to return the 

decision of display the voxel or not.  
 

Procedure parallel voxelizationedge-

function algorithm 

Enter the clockwise vertices of the 

Triangle (A,B,C) 

BEGIN 

x = blockIdx.x*blockDim.x +threadIdx.x; 

y = blockIdx.y*blockDim.y + threadIdx.y; 

 z = blockIdx.z*blockDim.z + threadIdx.z; 

map the threads coordinates to the 

triangle coordinates 

for each thread 

Begin 

e1=(A.x-B.x)*(y-A.y)-(A.y-B.y)*(x-

A.x)-(A.z-B.z)*(z-A.z); 

e2=(B.x-C.x)*(y-B.y)-(B.y-C.y)*(x-

B.x)-(B.z-C.z)*(z-B.z); 

e3=(C.x-A.x)*(y-C.y)-(C.y-A.y)*(x-

C.x)-(C.z-A.z)*(z-C.z); 

if (e1>=0 && e2>=0 && e3>=0) 

 store_voxel_float4(x, y ,z, 

1.0f)  

End 

END  
 

Fig.7 The pseudo code for parallel 3D-triangle 
voxelization using scan-line approach 

In general, a voxel could be inside the 

triangle if and only if the results of all the three 
functions are greater or equal than zero, 

otherwise, the voxel lies outside the triangle.   

The advantages of this algorithm include 

simple logic and high precision, yet it has 

relatively low efficiency since it needs more 

threads. 

 

4. RESULTS AND DISCUSSIONS 

To evaluate the performance of parallel 

voxelization, the implementation isrealized on 

GPU using NVIDIA CUDA architecture, this 
architecture is chosen due to hardware availability 

and experience with this technology.  

The parallel testsare implemented on 

personal computer having Intel® CoreTM i7 

processor with one NVIDIA GeForce 1050 GTX 

of compute capability 6.1.This processor contains 

five SMs (Streaming Multiprocessors), with each 

of them 128 SPs (Stream Processors) and the 

maximum memory data rate (112 GB/s).All 

applications are designed in CUDA version 9.2 

using CUDA/C++ languages on visual studio 

environment. 
The obtained results of parallel 

voxelization algorithms are discussed in this 

section. They are partitioned into two parts: the 

first one for line and the other for triangle 

voxelization, each of which iscomparedwith 

sequential and other previous worksresults in 

addition to the OpenGL implementation on GPU 

itself.  These results of parallel implementation 

are optimized according to the block sizes and the 

occupancy metrics using the NIVIDIA profile and 

Nsight tools.  

 

4.1. GPU-based 3D DDA results 

In this section, we implement the parallel 

3D DDA algorithm as described in section (3.1). 

The algorithm is applied on different sizes of 3D 

data from a starting point (0,0,0) to a maximum 

length as an endpoint where different lengths are 

used. The resulting line in the 3D space can be 

moved by the mouse in different orientations.  

In the three different implementations 

sequential, OpenGL and parallel,the 

measuredtime and FPS metrics are listed in 
Table.1. These times are measured in 

microseconds and the block size for CUDA 

implementation is set to 8x8 in this test. As can be 

seen from the table, the calculation time depends 

on the data size. Also the sequential 

implementation (voxel by another) could not be 

able to process large data set but the openGL 

could, while the CUDA program can implement 

more than four million voxel, it is suitable for 
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intensively high computing program. The table 

also shows the speedup of CUDA over OpenGL 
implementation where a significant factor is 

gained. 

 
Table 1:Execution times in (µ seconds) and speedup for 

3D DDA implementations 

Voxels 

number 
Seq. OpenGL CUDA 

Speedup 

CUDA\ 

Seq. 

Speedup 

CUDA\

OpenGL 

1 024 4 720 8 978 2.06 847.70X 4352X 

4 096 16 971.4 9 920 2.372 1756.14X 4132X 

65 536 256 359s 16 987 11.616 3864.55X 1462X 

262 144 8 829 333 44 914 42.464 36 133X 1058X 

1 048 576 --- 158 575 165.21 ----- 960X 

4 194 304 --- 598 399 656.35 --- 912X 

 

From the performance analysis in the 

profile (nvprof), we found that the executable 

kernel hits the peak theoretical bandwidth, where 

the achievable bandwidth for this kernel is about 

94.6GB/sec that is close to the effective 

bandwidth of this device (112 GB\sec) and it hits 

the reasonable bandwidth target which is about 

94.616 GB\sec. So there is no more optimization 
could be done to improve the performance since 

the kernel reaches to memory bounding. 

 

4.1.1 Effect of varying the block size 

In this work, a block size is chosen due 

to some experience and considering NVIDIA 

profile (nvprof). The benchmarking of this factor 

is explained here to enhance the overall GPU 

performance and to investigate how threads are 

distributed among the available processors. The 

results in Fig.8are extracted from the profile 

report when implementing the 3D DDA on data 
size of 65536 vertices. The left figures show 

varying theoretical active warp with the block 

size. It is evident from the figure that the red 

circle points to the current block size (8x8), if the 

chart goes higher than this circle point, this means 

that the selected value is not suitable, and the 

performance can be improved by increasing the 

block size. This increasing could subsequently 

increase the active warp per SM that in turn 

increases the occupancy.  

 
 

 
(a)                                                (b) 

Fig.8 Parallel performance for 65536 voxels using 8x8 
threads (a) Effect of varying block size on warps per SM 

(b)The achieved occupancy  

 

As can be seen from Fig.8, the 8x8 

threads achieved the highest warp per SM (64 

warp or 2048 threads for this type of GPU) so it is 

a good choice. While the 4x4 block size, holding 

other parameters constant, made the max warp per 

SM equal to 32 only, resulting in low occupancy. 
We will explain the occupancy factor in details 

next section.  

The other block sizes of the 512, 256, 

128 threads are also tested (as 1D, 2D or 3D 

configurations). They approximately gave the 

same performance and nearly achieved identical 

occupancy as 64 block size, whereas the 1024 

threads operate with less occupancy. Although 

this larger size reduces memory fetches, but the 

reason is that the SM cannot process more than 

two blocks at a time. However, the execution time 

just slightly increases as benchmarked in Table.2. 
In general, the highest block size needs too many 

resources to execute a block, so, it consumes 

more time. The new thread block may wait to get 

a resource; thereby the SM may be unable to 

cover the latency of memory accesses. 

 
Table.2: Effect of different block sizes on the 

execution time  

 

In the previous table, the execution times 
for few voxels approximately remained constant 

till the voxels occupy all the SMs in the GPU. For 

Data size 

Exe. Time (µ sec.) 

Block size  

(1024 threads) 

Block size 

(256 threads) 

Block size  

(16 threads) 

1024  2.240 1.952 2.208 

4096   2.240 2.270 3.168 

16384  3.648 3.616  7.040 

65536  11.808 11.649  22.112 

262144  42.592 42.496  81.792 

1048576  165.248 165.184  320.023 

4194304  656.351 656.255       1274.91 
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example, when the number of voxels is 1024, 

only one block of the 32x32 threads can reside on 
one SM. Therefore, the GPU is not a suitable 

target for small data size compared to other 

platforms; it needs more data to exploit the power 

of GPU. While when a (16x16) block size is used, 

it means that there are enough threads per block 

to provide hardware with many warps to switch 

between, 

 

4.1.2 Effect of the occupancy factor 

The occupancy metric is also measured 

for different block and data sizes as shown in 
Fig.9, where three different block sizes are 

examined. This factor describes the ratio of 

executed active warps on the SM to the maximum 

possible number of active warps that SM can 

support[17].The 1050 GPU type has five SMs and 

each one can operate on 2048 threads. So the 

work of the voxelizing is partitioned by how each 

SM could be occupied by active blocks[18]. As 

can be seen from Fig.9, increasing the block size 

could subsequently increase the active warp per 

SM that in turn increases the occupancy to about 

80%. Whereas the (32,32) threads operate with 
less occupancy, because the SM cannot process 

more than two blocks at a time and needing more 

resources reduced the active warps.In general, the 

occupancy metric is affected by two factors, the 

block size and the workload given by the data 

amount.  

 

 
 

Fig.9 Percentage of achieved occupancy using different 
block size on various data size 

 

After explaining this optimization, the 

optimal amount of threads per block can be 64 or 

256 threads configurations which gave the higher 
performance. Using the (16x16) 256 threads, the 

average warps per each SM are indicated in 

Fig.10 as 65536/2048/5SMs =409.6 threads. SM1 

and SM3 launched fewer warps compared to 

others. The utilization of the SMs (SM activity) 

according to this configuration is nearly 100% 

and the hardware waste is low. 

 
Fig.10 3D DDA kernel statistics of warps launched and 

SM activity (16x16 block size, 65536 voxels) 

 

4.2. Parallel 3D triangle filling results 

In this experiment, the 3D triangle filling 

is tested on fixed size triangle using both scan-

line and edge function method. In scan-line 

method (start and endpoints approach) each 

thread could compute single span of different 

number of voxels, while in the other method, 

more threads are occupied to fill the same area of 

triangle thereby it consumes less time. Not all of 
these threads achieve the three conditions of the 

edge function that determines which location to 

fill, so the number of displayed voxels is less than 

the number of the executed threads. The 3D 

indexing is used here (GPU 1050 supports this 

feature) where the thread coordinates x, y and z 

direction are checked in the edge function 

equations.  

The results are recorded in Table.3, 

where the execution time and the FPS for these 

methods are compared. The block size is set to 

16x16 threads and the mesh size (number of 
threads) is set according to the dy value of a 

triangle approximated to multiple of 32. The 

output triangle has about 16384 voxels. 

Eventually, the parallel implementation 

outperforms the OpenGL and the sequential 

execution, the acceleration factor is about 247x 

for the scan-line and 4238x for the edge function 

method with respect to OpenGL execution. This 

demonstrates the more parallelism that inspired 

the second method and how it was adapted well 

as parallel configuration.The maximum 
throughput is about 4500 M voxel/sec.    

On the contrary, the scan-line filling is 

executed with a sequential portion to draw a 

single span. Hence, the execution depends on the 

thread with longest span since the spans are 

different in their lengths, so the throughput is 

decreased to about 69M voxel\sec. 

  
Table 3: Performance of triangle filling methods  

 

Scan line Edge function 

Exe time 

(µ sec.) 
FPS 

Exe time 

(µsec.) 
FPS 

Sequential 303 878.720 3.3 90 654.912 10.1 

OpenGL 58 438.23 30.2 16 954.112 59.4 

Parallel 236.256 929.2 4.001 1068.2 
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In 3D space, the orientation of a triangle 

is an important factor that determines the number 

of voxelized vertices even if the triangulation 

process for volumetric representation forms the 

surface as equilateral triangles. The maximum 

filling voxels are displayed when the viewing 

angle is perpendicular on the triangle plane. 

Therefore the execution time is changed 

according to this viewing angle. 
 

4.3 Comparison with previous works 

Although not many resources that relate 

to this work, the results of the voxelization are 

compared to the algorithms that are implemented 

on other platforms even if it used a 2D version 

scan conversion. These algorithms are also tested 

to render only few pixels. Table.4 presents 

comparison of line drawing with other previous 

works. These works tested their algorithms on 

small data size of only one thousand vertices. In 
our implementation the rasterization of up to 

10240 voxels consumes about 2.41 micro seconds 

making the throughput of about 4 G voxel\sec. 

For triangle rasterization, the best 

implemented algorithm (edge function) is 

compared with other accelerated algorithms that 

have been realized on different platforms as 

FPGAs. The same triangle size is used for 

comparison although these algorithms are 

implemented as 2D version. Table.5 shows the 

execution times in (µ sec) consumed for triangle 

rasterization. Our GPU voxelization costs the 
least time compared with other algorithms. It 

approximately remains constant for all the three 

compared sizes, since these sizes are considered 

so small to fill the GPU processors and to utilize 

its efficiency. 

 
Table 4: Execution times of line drawing compared to 

other works 

 
End 

coordinates 

Operating 

environment 
exe.time 

throughput 

voxel\sec 

[6]  3D 

2018 
(992, 992, 992) 

ZyboSoC 

board 
0.31μs 3.20 G 

[5] 3D 

2013 

(1000, 1000, 

1000) 

Spartan 3E 

FPGA 
13.16μs 73.5 M 

[5] 3D 

2013 

(1000, 1000, 

1000) 

Spartan 3E 

FPGA 
14.71μs 68.0 M 

[4] 2D 

2011 
(1000, 1000) 

Personal 

computer 
1.25ms 0.8 M 

[19] 2D 

2010 
(1000, 1000) 

Personal 

computer 
1.36ms 0.73 M 

[Current] 

2019 

(10240, 10240, 

10240) 
GeForce 1050 2.41 μs 4.24 G 

 

Table.5: Triangle filling time (µ sec.) comparison with 
previous works 

Algorithm 

v0(100,30) 

v1(10,100) 

v2(20,80) 

v0(50,20) 

v1(100,100) 

v2(10,100) 

v0(10,20) 

v1(80,50) 

v2(50,100) 

[15] 2009 

Tiled traversal 
18.895 59.995 41.665 

[20] 2010  

Central traversal 
9.204 40.332 29.300 

[21] 2011 

Midpoint traversal 
8.764 40.112 25.745 

Current work 3D 2.419 2.461 2.413 

 

 

5. CONCLUSION 
In this paper, the acceleration of 

voxelization unit has been achieved using parallel 

techniques, where many voxels have been 

produced at a time. The acceleration amount of 

the parallelized 3D DDA was about 4352x max 

compared to the OpenGL implementation that 

also uses parallel technique in its execution. In 

triangle filling, the scan-line algorithm cannot 

easily parallelize to compute many voxels at a 

time. It is more difficult than the edge-function 

approach since it operates per line instead of per 
voxel parallelization. However, the maximum 

throughput of parallel 3D DDA implementation 

was about 4.24 G voxel \sec.In terms of triangle 

voxelization, 4.5G vertex\sec. was obtained in 

edge-function parallel implementation and about 

69M vertex\sec. was the throughput for the scan-

line implementation. 

Finally, the parallel implementation has 

been optimized many times to get these 

results.We can conclude that more threads in 

blocks donot lead to higher occupancy; there must 

be other factors that restrict performance. At the 
same time, a higher occupancy does not always 

achieve good performance since it may increase 

the memory controller connections, therefore the 

benchmarks is needed to choose the best for a 

given case and a given hardware type.  
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 الملخص
النقل الخاص  في خط الاشكالعرض  مهمة في خط نقل الرسومات الثلاثية الابعاد,تنُفذ هذه المرحلة قبلتعتبر عملية تجسيم الاشكال من المراحل ال 

م استخدتم ا .العمللتسريع  الخاصة بتوليد النقاط وذلك بأستخدام التنفيذ المتوازي خوارزمياتصميم ال، تم ت بحثال افي هذ(.GPU) وحدة المعالجة الرسوميةبـ
الذي يعتبر العنصر الاساسي للعمل في الانظمة  هذه الخوارزمية في ملء المثلثواُستغلت  (.DDAفاضلي الرقمي ثلاثي الأبعاد )خوارزمية المحلل الت

تم تصميم الطريقة الاولى بحيث يتم توليد خطوط المسح بصورة متوازية. اما في  الحافة. دالة خط المسح وطريقتين اساسيتين:  باستخدام الصورية, وذلك
 CUDAصُممت ونُفذت بنااءاًعلى معماريةجميع هذه الخوارزميات  يقة الثانية فتم توزيع العمل بحيث ان كل خيط يولد نقطة صورية واحدة.الطر

،  OpenGLبتنفيذ الـكحد أقصى مقارنةً  2534xكان حوالي  3D DDAخوارزمية هرت النتائج التجريبية أن مقدار التسارع لاظ .GPUمعالج بأستخدامالو
 مليار نقطة في الثانية الواحدة. 2.3وذلك بسرعة توليد من خط المسح  فكانت افضلة الحافة اما خوارزمية دال

 

 

 الكلمات الداله :

 .تجسيم الاشكال،التنفيذ المتوازي ،دالة الحافة  ،معمارية كودا وحدة المعالجة الرسومية ، 

mailto:fhali_a@yahoo.com
mailto:sura.nawfal@uomosul.edu.iq

