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Abstract
Training of Artificial Neural Networks (ANNs) for large data sets is a time
consuming mission. In this paper, accelerating the training of artificial neural
network is achieved by a parallel training using either Multicore Central
Processing Unit (CPU) or General Purpose Graphics Processing Unit
(GPGPU). The training is implemented using five datasets with diverse
amounts of patterns and with different neural network parameters in
Multilayer Perceptron (MLP). The results show a significant increase in
computation speed, which is increased nearly linear with the number of cores
in multicore processor for problems with medium and large training datasets.
Also, a considerable speed up is achieved when the GPU is used to train the
MLP with the large training datasets. While a single core processor is a better
choice when the data set size is small. The optimal number of cores or the type
of the parallel platform should be employed according to the load of
computation.
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1. Introduction
Neural networks are efficient to solve problems where mathematical modeling of the
problem is difficult. They are used to exceeded problems including feature
extraction, noise reduction, classifications and image matching. Typically large data
is required to train the neural networks. As the size of the neural network increases
the time required to train increases exponentially. Many Attempts are made to
reduce the training time of the neural network by reselecting initial values[1][2].
Training a neural network for large and complicated problems normally leads to use
very large amounts of training data with hundred thousand or even millions of
patterns. Such training can take weeks and even months to get the desired precision.
In the same way, finding an optimal neural network configuration requires a certain
amount of cross-validation testing, which can be also very time consuming.
Therefore there is a need to speed up the training process of neural networks,
especially for large training datasets. Recently multicore and multithreaded CPUs
with shared memory are a cost effective way of obtaining significant increases in
CPU performance. An exponential growth in performance is expected in the near
future from more hardware threads and cores per CPU [3].In the other way there are
some attempts to speeding the training implemented by Graphical Processing Unit
(GPU) [4]. Researches focused their attention recently on parallelizing a variety of
computational intelligence algorithms [5-8] using the new processors. For neural
networks two basic methods of parallelization can be defined: parallelizing the
neural network structure and parallelizing the training process [9]. The first method
exploits the parallel nature of neural networks, and assigns to each processing node
(neuron) a separate thread [5]. All neurons in one layer are processed simultaneously
and synchronized before propagating into the next layer. The second method is to
assign a part of the training dataset to each thread and train them simultaneously.
This method is covered in [6], where a three-layer perceptron neural network is
parallelized and tested using two and eight threads. The same technique is
implemented for dual-core processors in [7]. MATLAB is used in technical
computing, it is preferred to develop an algorithm in MATLAB first. Then the code
can be converted into C Language for real life demands. In this paper acceleration of
training the neural network made for Multi-Layer Perceptron using Backpropagation
algorithm and the sigmoid nonlinear activation function implemented on Core i7
processors and The GeForce 610M contain 48 cores under MATLAB environment
are achieved.
Most of the nowadays laptops or desktop PCs are provided with the above
mentioned parallel platforms. Our goal is to investigate the acceleration of training
using such platforms under the most commonly popular parallel programming
paradigm (MATLAB) used in technical computing. If the performance of network is
adequate, then there is no need to transfer the code to other parallel programming
language which may be complicated to be achieved.

2.Multi-Layer Perceptron (MLP)
MLP model has an input layer, a hidden layer and an output layer. This structure of
the network allows many calculations to be performed at the same time to decrease
the processing time [10]. The hidden layer is connected with others by
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interconnected weights. A general structure of an MLP neural network which
consists of one input layer, one single hidden layer and one output layer, illustrated
in Figure (1).

Figure (1): MLP Neural Network Architecture

3. Back Propagation (BP) Learning Algorithm
This algorithm can be used with any multi-layer neural network with any activation
function that can be driven to get outputs of their neurons through repetitive process,
The central idea of this algorithm is that the errors of the hidden layer unit are
determined by backpropagating the errors of the units of the output layer. Therefore
this method is known as backpropagation learning rule. Thus backpropagation can
be considered as learning rule algorithm to multiple layer networks and nonlinear
differentiable transfer functions[12]. Each iteration of this algorithm consists of
several steps. The steps of back propagation algorithm can be reviewed in [13].
Typically many epochs are required for training a backpropagation neural network.
The original algorithm updates the weights after each training pattern is presented. A
common variation is a batch updating, in which weight updated are accumulated
over an entire epoch before being applied.
The choice of initial weights will affect whether the network reaches a global (or
only a local) minimum of the error and, if so, how quickly it converges. The update
of the weight between two layers depends on both the derivative of the first layer
activation function and the activation of the second layer respectively. For this
reason, it is important to avoid choices of initial weights that would make either
activations or derivatives of activations are zero. The values for the initial weights
must not be too large, or the initial input signals to each hidden or output unit will be
likely to fall in the region where the derivative of the sigmoid function has a very
small value. On the other hand, if the initial weights are too small, the network input
to a hidden or output unit will be close to zero, which causes an extremely slow
learning. Initialization of the weights and biases must be set to random values
between -0.5 and 0.5 or between -1 and 1 or some other suitable interval[10].

The basic procedure for the training of the neural network can be mentioned as
follow:

i:layer
j:layer

k:layer
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1- Apply the data vector to the network and calculate the corresponding
outputs.

2- Compare the actual outputs with the target outputs and determine  the error.
3- Determine in which direction to change the weights in order to reduce the

error.
4- Apply updated weights.
5- Forward and backward computation will be repeated with each inputs sets

until the error for all inputs in training set are reduced to an acceptable
value[14].

4. Sequential Training of Artificial Neural Networks
Typically, the ANN takes many epochs before it has learned the problem to within
an acceptable error. Sometimes learning is not successful due to a particular random
initialization of the connection weights. In these cases learning is stopped after some
max number of epochs, and new random weights are computed for another try.
There are a variety of factors that work together to cause very long training times for
backpropagation. The primary cause is due to the large number of connection
weights, which can be hundreds or thousands. Backpropagation performs a gradient
descent on the error surface generated by evaluating the mean squared error of the
neural network on the training set. Gradient descent can be fooled by local minima
of the error surface and can take a very large number of epochs to converge to an
acceptable minimum. It is not unusual for more difficult problems to take hundreds
of thousands or even millions of epochs. Additionally, training can take a long time
due to a large training data size. Also, just processing a single training pattern can
take a long time on a complicated or large ANNs[15].

5. Parallel Training of Artificial Neural Networks
There are two techniques to parallelize the training of artificial neural networks
depending on the size of the network and the available memory.

5.1 Network Parallel Training (NPT)
Network Parallel Training, is a technique used to parallelize neural network training,
In this method the neurons of the ANN are divided across machines in the cluster, so
that each machine have a portion of the neural network. Each training pattern is
processed by the cluster machines in parallel. To process a single training pattern,
communication is required between any cluster nodes containing neurons that are
connected by an edge (see Figure 2). Network Parallel Training attacks the training
time problem by improving the time to process a single training pattern. It has the
potential to work well when implemented on special-purpose parallel hardware,
however, itis much less likely to work well on a cluster of workstations. In order to
benefit from being split up across multiple machines, the neural network must be
large enough to prevent the cost of communication between neurons on different
cluster nodes from overwhelming the potential speedup from parallelizing the
computation. The network latency and bandwidth on most cluster systems will
significantly limit the degree of parallelism possible for training even in large sized
ANNs. When the original ANN is of small or medium size, there is even less benefit
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from an NPT approach as there will be little local computation between
communication points [15].

…......

Figure (2): Neurons are divided into multiple nodes NPT.

5.2 Pattern Parallel Training (PPT)
Pattern Parallel Training is a technique used for parallelizing the training of artificial
neural networks that is designed to work on cluster computers. The patch training is
suitable to be used with this technique. In PPT the full Neural Network is duplicated
at each node (see Figure 3). Each node then trains its local copy of the network on a
subset of the training data which is selected randomly. When the local computation
is complete, nodes broadcast their final weight updates to other nodes. In this
system, an epoch consists of the local computation of the weight updates on a subset
of the patterns. At the end of each epoch, every node applies the weight updates
from the other nodes to its neural network and determines if the training is complete
or if another training epoch is needed based on the error condition. The speed-up in
training is achieved by reducing the time of performing a single epoch; in parallel
each node evaluates just a subset of the full training data each epoch. By
communicating only at the end of each epoch, the communication costs of Pattern
Parallel Training are reduced[15].

..................

Figure (3): Neural Network is duplicated in PPT.
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6 . Implementation Platforms
The CPU, Multicore CPU, and GPU are chosen in this paper as platforms for
implementing the sequential and parallel training of MLP using BP algorithm. In
what follows, a brief introduction of each platform is overstated.

6 .1 Central Processing Unit
The CPU architecture has only one processing unit in the chip (As seen in figure 4),
for performing the arithmetic or logical operations. At any particular time, only one
operation can be performed [16].

6.2 Multi-Core Processor
A multi-core processor is a system that comprises of two or more independent cores (or
CPUs). The cores are generally integrated onto one integrated circuit die (known as a chip
multiprocessor), or they are integrated onto multiple dies on a single chip package, (See
figure 5) [17].

6.3 Graphic Processing Unit
GPU is viewed as a computing device operating as a coprocessor to the main CPU
(host) processor constructed in a superscalar fashion. A GPU is implemented as an
aggregation of multiple so-called multiprocessors, which consists of a number of
Single Instruction Multiple Data
(SIMD) ALUs integrated as network
on a chip as shown in figure (6). A
single ALU is called processor.
According to the SIMD concept, every
processor within a multiprocessor
must execute the same instruction at
the same time, only the data may vary
[18].

Figure (4) CPU hardware architecture Figure (5) Multicore hardware architecture

Cache
Control
ALU

Figure (6) GPU hardware architecture
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7. Benchmark, Algorithm, Software and Hardware Models
Using MLP as an encoder is taken
as a benchmark to test the
proposed training techniques.
Different sizes of encoders are
used. Then different sizes of
networks are used. The input and
target for each network is the input
pattern and its code respectively.
For example, if 8-bits encoder is to
be implemented using MLP
(Figure 7), then eight neurons in
the input layer and the same

should be used  as a target. The
MLP is trained for 28 different
inputs and 28targets (encoded outputs). If the size of the encoder (word length) is
enlarged (for example 16-bit encoder has 216=65,536 words), then the number of
training patterns and the training time overhead  are increased dramatically. Also,
the size of MLP should be enlarged enough to accommodate this change.

To cope with this challenge, pattern parallel training algorithm is implemented to
train a large word length neural network based encoder (Figure 8). The PPT
technique is tested for parallel training of ANN on the five different sizes of
training data set (see Table (1)). .

Figure (8) Parallel Training Algorithm

in

Figure (7) An 8-bit encoder
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The computational load is proportional with both the encoder word length and the
network size which in turn is determined according to the encoder size. Thus, the
computational load is divided into three main categories: small, medium and large.

The PPT is implemented using a Laptop of an Intel(R) Core(TM) i7-2670QM
CPU@ 2.20 GHz , 8GB RAM, and the GeForce 610M GPU which contains 48
cores with 1 GB of RAM. The later was installed on a Laptop of an Intel (R)
Core(TM) i5-3210M 4 CPUs operating at 2.5 GHz, 6GB RAM. The MATLAB
environment software is used. Some special instructions and functions are used to
transfer the data and computations from the host processor to the accelerator (GPU)
and gather them back to the host such as gpuArray, nndata2gpu and gpu2nndata.
Also, when a multicore processor is used, matlabpool open enables the parallel
language features within the Matlab language to use parallel instructions such as
parfor or spmd and matlabpool close return Matlab to its traditional sequential
mode

Teble (1): Different training data sizes for encoders of vairiant word lengths.

8. Experimental Results
As shown in Figure (9), when a multicore processor is used for small samples of
training data set, the time required to train the network is even increased when the
number of employed cores are increased(see a and b in Figure(9)). The time required
to initialize cores and the communications among cores dominants over the benefits
acquired from the parallelization when dealing with small training data set. The best
time is obtained when using single core processor for P1 data set and two core
processor for P2 data set. The communication overhead seems to be vanished if
larger samples of training data set are required to train the network. That is because
the computation operations become larger than the communication and initialization
operations (see c, d and e in Figure(9)).
The speed up was calculated :

Speedup = Sequential timeParallel time … … … (1)
As much as 4x speed up is achieved over a single core processor, when 8-cores
processor is used (Table 2).

type word length ( # bits) # Training set patterns Computational Load
P1 8 256 Small
P2 12 4096 Medium
P3 16 65536 Medium
P4 28 65536 Large
P5 32 65536 Large
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(a)

(b)

(c)

(d)

(e)
Figur(9): Time performance using Multicore processor for variant network training set sizes.

1-Core  2-Core 3-Core 4-Core 5-Core  6-Core 7-Core 8-Core
P1 1.123493 1.691422 1.942931 2.2408 2.424461 2.749796 2.931252 3.198436

0

1

2

3

4

Ti
m
e(
se
c)

 1-Core 2-Core  3-Core  4-Core 5-Core 6-Core 7-Core 8-Core
P2 5.608083 1.601897 1.903037 2.096483 2.27026 2.642852 2.612488 2.919512

0
1
2
3
4
5
6

Ti
m
e(
se
c)

1-Core  2-Core  3-Core 4-Core  5-Core  6-Core  7-Core  8-Core
P3 84.148623 37.448635 30.1103 26.563253 24.98659 23.718945 22.234429 20.99381

0

20

40

60

80

100

Ti
m
e(
se
c)

1-Core 2-Core 3-Core 4-Core  5-Core  6-Core 7-Core  8-Core
P4 24645 12787.639 8938.8626 8497.3065 8614.4286 8081.0098 7388.8403 7210.3914

0

5000

10000

15000

20000

25000

30000

Ti
m
e(
se
c)

1-Core  2-Core  3-Core 4-Core  5-Core 6-Core 7-Core 8-Core
P5 113051 37539.381 30596.145 28175.283 27581.067 27730.038 27480.64 27166.708

0
20000
40000
60000
80000

100000
120000

Ti
m
e(
se
c)



Al-Rafidain Engineering                     Vol. 23                      No. 3 June 2015

10

Table (2): Best speed up achieved using Multicore CPU(8-Core).

Best Speed upData
1.123493P1

3.500901119P2
4.008258768P3
3.417983649P4
4.16138017P5

When the GPU is used for implementing the training of the ANN, better results are
obtained. Smaller training time for large samples data set is achieved compared with
the training time consumed by a single core and a multicore processors (see Figure
(10)). As much as 304x speed up is achieved over a single core processor, when
GPU is used ( Table 3).

Figure (10): Time performance using Multicore processor and GPU for variant netwok
training set size.

Table (3):Best speed up achieved using Multicore CPU and GPU.

GPU UtilizationsSpeed Up at
GPU (48 Core)

Speed Up at Multi
core processor(5

Core)
Data

28%0.173050.20980P1
83%0.066280.70949P2
98%0.392861.22953P3
98%232.2118762.20825P4
98%304.64104492.50053P5

It is difficult to compare the resulted speedup with previous state of the art published
works, since that the parallel platforms are available with diverse types, features and
powers. However, one can see that although the Matlab environment is used as a
parallel paradigm, a speedup of 304x is achieved in comparison with a speedup of

P1 P2 P2 P3 P5
Single Core 1 2.261412 149.87971 87857.11858 117628

5-Core 4.766381 205.779016 121.9 39785.77657 47041.2

 GPU 5.778519 34.114332 381.502138 378.348946 386.12
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63x which obtained in [4] where more powerful parallel platform  (the NVIDIA card
employed is the Tesla C1060 with 240 kernels) is used with CUDA programming
codes.

9.Conclusions
Parallel training implementation of MLP using Multcore CPU and GP-GPU is
presented in this work. Parallel programming using MATLAB tools with multiple
cores and GPU is investigated over five variant sizes of training data set. The
optimal number of cores or the type of the parallel platform should be employed
according to the load of computation. Employment of too many cores may degrade
the performance. It can be concluded that for both parallel platforms used (Multicore
and GPU processors), the efficiency of parallelizing the training process increases
when the data set size increases. Using a single core processor is a better choice
when the data set size is small. That is because that the time required to initialize
cores and to transfer data among the shared memory multiple cores dominants over
the benefits acquired from the parallelization. Accelerating the training by using
SIMD GPU is very advisable for large training data set over the single and multiple
core processors. Parallel computation using GPU on a medium dataset is not worthy.
A considerable training speed up is achieved using MATLAB which is a simplest
and most commonly popular languages used in technical computing.
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