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Abstract

This paper present the digital implementation of multiply-accumulate (MAC) circuit of
artificial neuron using FPGA (Field Programmable Gate Array) including three types of
nonlinear activation functions: hardlims, satlins and tansig. A VHDL hardware description
Language codes are used to implement the neuron using XC3S500E-FG320 Xilinx FPGA
device. The simulation results obtained with Xilinx Foundation 8.2i software are presented.
The results are analyzed in terms of usage percentage of chip resources and maximum
working frequency.
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1. Introduction

Acrtificial neural networks (ANNSs) have been used successfully in solving pattern
classification and recognition problems, function approximation and predictions. Their
processing capabilities are based on their highly, parallel and interconnected architecture.
Such characteristics make their implementation enormous challenging, and also very costly,
due to the large amount of hardware required [ 1].

Digital implementation of ANNs may be performed using different tools such as
custom design, digital signal processor (DSP), programmable logic ...etc. Among them,
programmable logic offers low cost, powerful software development tools and true parallel
implementation [ 2].

Field Programmable Gate Array (FPGA) are a family of programmable device based
on an array of configurable logic blocks (CLBs), which gives a great flexibility in
prototyping, designing and development of complex hardware real time systems . The
structure of a FPGA can be described as an "array of blocks" connected togerther via
programmable interconnections. The main advantage of FPGA is the flexibility that they
afford [ 3]. Xilinx Inc. introduced the world's first FPGA, the XC2064 in 1985. The
XC2064 contained approximately 1000 logic gate. Since then, the gate density of  Xilinx
FPGAs has increased thousands times [4]. Recently there is a lot of interest in the FPGA
realization of neural networks which is reported by many researchers [ 1, 5-8].

In the present work, we introduced the design of an artificial neuron models based on
a XC3S500E Xilinx FPGA device. The XC3S500E Xilinx FPGA device has high gate density
i.e. 500,000 logic gate and many features, as illustrated below [ 9], which are necessary for
neural implementation:

- Fast logic enable the design of compact and fast arithmetic functions (i.e., multiplication
and addition ).
- Look up tables can be used as RAMs and ROMs.
- Combinational functions have up to ten inputs within configurable logic blocks (CLBs),
and delays are very small and almost independent on the number of variable.

- Very high routing capabilities allows successful implementation of critical path delays,
even for complex neural network [1].

The Very high speed integrated circuit Hardware Description Language (VHDL) is
heavily used by large corporations, majority of companies as well as universities for FFGA
programming.VHDL was first adopted as language standard in 1987, with a major revision
occurring in 1993, 2001 [10 ]. VHDL is very powerful (HDL) but very complex syntax
language. VHDL simplifies the development of complex system such as ANNS, because it is
possible to model and simulate a digital system from a high level of abstraction with
important facilities for modular design [2 ].

The purpose of this work is to design an artificial neuron model. The model consist of
two stages .The first is the MAC stage for multiplication and accumulation of parallel inputs
and weights values . And the second is the nonlinear activation function for the output signal
.Three types of activation functions were considered : symmetrical hard limiter, symmetric
saturating linear, and hyperbolic tangent sigmoid (referred to as hardlims, satlins, and tansig
in Matlab software package receptivity ).
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2. Mathematical model of an artificial neuron

The common Mathematical model of an artificial neuron is shown in Fig.(1) [ 11] .

P
P>
Ps

Fig.( 1) mathematical model of artificial neuron .

The neuron output can be written as :
R
a=t Qw;p)) (1)
j=1

where p; is the input value and w ; is the corresponding weight value , a is the output of

the neuron, and f ( ) is a nonlinear activation function. Typically the activation function is

chosen by the designer for specific training algorithm , and then the weights will be adjusted
by some learning rule so that the neuron input / output relationship meet some specific goal.

3. VHDL design of the neuron

It is important to design the neuron without activation function as common part in designing
a complete neuron with any activation function based on FPGA The design affect the
utilization ratio of the chips area and the processing speed directly. The structure of the
neuron can be realized in many ways , mainly considering the degree of the parallel
computation needed .

The proposed VHDL structural diagram for hardware implementation of neuron is
shown in Fig (2 ). The structure contains two shift registers , one shifters hold the weights ,
while the other holds the inputs ( shift register with data load capability ) .This approach is
appropriate for general purpose neuron ( i.e., with programmable weights ) .It employs only
one input to load all weights ( thus saving on chip pins ) . The weights are shifted in
sequentially until the register is loaded with its weight . The weights are then multiplied by
the input and accumulated to produce the desired output .
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Fig.(2) VHDL structural diagram for neuron implementation.

The VHDL code used for the implementation of a neuron without activation function is
presented in table (1).

Table (1) VHDL code for implementing neuron without activation function (linear neuron).

library IEEE:
uze IEEE.3TD LOGIC 1164.ALL:
use IEEE.3TD LOGIC ARITH. ALL:
Entity one top i=
generic [ r: integer = 3:
b: integer := 4] =
Port | pl,p2d,p3 : in IGHNED (h-1 downto 0]
w : in Signed (b-1 downto 0):
clk : in S3TDh_LOGIC:
a : out 3Jigned [(2%¥bh-1 downto 01
end one_top :
architecture Behavioral of one top i3
Lype welghts iz arravy (1 to r) of sighned (b-1 downto 0);
Lype inputs iz arravy (1 to r) of signed (b-1 downto 0):;
begin

process | clk, w, pl, p2, p3)

variabhle weight: weights:wvariable input: inputs:
variabhle prod, acc: signed (2%h-1 downto 0 ;

begin
i [clk'event and clk='1']l then
weight (= w & weighti{l to r-1); -

end if:

input{l) = pl:;inputi(d) := pZ:input(3)

aco 1=(others => '0');

11: for j in 1 to r loop

prod = input(jl* weight(]j):;acc = acc + prod;
end loop 11:

a <= acoc: |i|‘%F3L‘[F-Lt of

end process ; Neuron

end Behawvioral:

Simulation results is shown in Fig.( 3a ) .The neuron has three 4- bit input each .since a
SIGNED data representation was employed , the range of the input values and weights runs
from (-8 to 7 ) and the range of the 8-bit output runs from ( -128 to 127 ). The first input
vector applied to the neuron has the values p,=3, p,=4, and p,=5, since there are three
wights , three clock cycles are needed to shift them in ,as shown in Fig ( 3 a) .The values
chosen for the weights were w,=7,w,=8w,=9. Note that 9 is in indeed -7 , and 8 is -8

15



Khalil: Digital Hardware Implementation of Artificial Neurons Models Using FPGA

because data type used here is SIGNED . Consequently, the weight have been all loaded , the
system immediately gives its output, e, a=p,W,+p,W,+p,w,
=(3)(-7)+(4)(-8)+(5)(7)=—18 represent as 256—18=238. The neuron output for the
second input vector [6 8 2] is 36. Fig.(3b) shows the RTL (register transfer level) hardware
schematic circuit for implementing linear neuron.

Now:
2100 ns |D ns 4?” 84D| ns 1260 1680 ns

[+ @ p1[3:0]
@ p2[3:0]

[ @i p3[3:0]
G wi30]
ik
= gl almo)

= O @ =W

(b)
Fig.3 (a) Time diagram, (b) Hardware circuit, for implementing an 8- bit linear
artificial neuron (without activation function).

4. VHDL design of activation functions
The activation function in Fig.( 1 ) may be linear or nonlinear function of n. Aparticular
activation function of neuron is chosen to satisfy specification of the training algorithm that

the neural network is attempted to run. In this work, three of the most commonly used
activation functions are hardware implemented on FPGA using VHDL language.
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4.1 The symmetrical hard limit activation function

The symmetric hard limit transfer function referred to as " hardlims " in matlab . It is
used to classify input into two distinct categories , and can be defined as follows [11]:

oo -1 n<0
11 nso0 i (2)

This function is shown in Fig (4 ) . it is used with MLP, and Hopfield neural networks :-
o

+1

= J7

a = hardlims LnD

Fig.( 4 ) Symmetrical hard limit activation function

The VHDL code used to implement this function is shown in table ( 2), as VHDL
package.

Table ( 2) VHDL code for implementing hardlims function as a package .

library IEEE:

use IEEE.3TD LOGIC 1164.all: hardlims function as
uze IEEE.3TD LOGIC_ ARITH. ALL: VHDL package

uze IEEE.3TD LOGIC SIGNED.ALL:

package hardlims funl is

function hardlims [2ignal n @ =2ighed) return =signed:
end hardlims funl ;

package hody hardlims funl is

function hardlimz (signal n : =2igned) return signed i=
variabhle a: signed (7 downto Q)

hariable Lemp: integer range -5 to 7!

hbegin

Lemp = conv_integer (o ];

if [ temp »>= 1 ) then temp = 1 ;

else temp = s
end if; 8-hit signed reurun
8 <= conv_signed (temp,8): outpU

return a;
end hardlims:;
end hardlims funl:

For simulating purposes the neuron inputs p; and weight w, were represented as
signed 4-bit, the output of MAC n as signed 8-bit, and neuron output a represented as std-
logic 1-bit . The time diagram for artificial neuron with hardlims activation function is
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shown in Fig.(5a). Fig.(5b) shows the RTL hardware schematic circuit for implementing
hardlims neuron.

Now:
1000 ns i e
[ \ [ [ I
H g pl[30] B ) B
A @ n2(30] 8 )4 B
3 B3] 4 Y [
# Bwa0] 8 b g ) 7 A @
M clk 0
% B arm 1 255 ¥ 1 R
% unsigned 255 unsigned
- $singed 9 unsigned =-1 signed
=T signed

I

(b)
Fig.5 (a) Time diagram, (b)Hardware circuit ,of implementing an 8-bit neuron with
hardlims activation function .

4.2 The saturating linear activation function

The output of saturating linear activation function " satlins ", can be defined as follows
[11]:

-1 n<-1
a=<n -=-1<n<1 L 3)
1 n>1

as illustrated in Fig (6 ) . Neuron with this activation function are used in the ADALINE
neural networks .
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a = satlins (n)

Fig. (6 ) Saturating linear activation function.

Table 3 shows the VHDL codes ( as a package) used for implementing the "saltins"
activation function.

Mow:
1000 ns ‘Dns j | 200 I I ‘ mnlns I aTn ‘ I annl ns ; I 100
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Table ( 3) VHDL code for implementing satlins activation function as a package .

libhrary IEEE:

use IEEE.STD LOGIC 1164.all:
use IEEE.STD LOGIC ARITH. ALL:
use IEEE.STD LOGIC SIGNED.ALL:

WHOL code package
for satlins function

package satlins funi i=s

function =satlins [2ignal nace @ 2igned] returnh signed:
end satlins funi ;

package body satlins fund i=

function =satlins [2ignal nace @ 2igned) return signed is
variable aa: =2igned(? downto 0] :

variable satl: signed(? downto 0):= "01000000%; -- o4
variable sati: signed(? downto 0):= "11000000f7; -- -G64
hegin -

if [ nacc »>= satl | then aa := satl saturation
elgif [ nacc <= sgatZ ) then aa := gsatd ; values
else ga = nacc ;

end if:

g-bit signed neuron
autput

return aa;
end satlins:;
end satlins funi;
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The resulthng simulation timing diagram of the neuron with satlins activation function
is shown in Fig.( 7a) . where 4-bit are assigned to the input p;, 4- bit to the weight w; , 8-

bit to the input of the activation function, and 8- bit to the output a. Note that all data are of
singed type. It can be seen that the output of the neuron a equal the output of MAC n as
long as it is lower to the saturation level .Once the sum equals or becomes greater than the
saturation level the output remains constant and equal to the saturation level . Fig.(7b) shows
the RTL hardware schematic circuit for implementing satlins neuron.

=
==
[ e B
==
=2

(b)
Fig .7 (a) Time diagram, (b) hardware circuit, of implementing neuron with satlins
activation function.

4.3 Hyperbolic Tangent Sigmoid activation function

The Hyperbolic tangent sigmoid ( tansing ) activation function is shown in Fig ( 8) .
This function takes the input ( which may have any value between plus and minus infinity )
and the output value into the range - 1to 1 , according to the expression [11]:

a=>"% (4)
e" +e™
or
o D |
Fi
O
-1

Fig.( 8 ) Hyperbolic tangent sigmoid (tansig) activation function.

The tansig activation function is commonly used in multilayer neural networks that
are trained by the backpropagation algorithm , since this function is differentiable [11 ] . The
tansig function is not easily implemented in digital hardware because it is consists of an
infinite exponential series [2 ] .Many researchers use a lookup table to implement the tansig
function. The draw back of using lookup table is the great amount of hardware resources
needed [1,5]. A simple second order nonlinear function presented by kwan [12 ], can be used
as an approximation to a sigmoid function . This nonlinear function can be implemented
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directly using digital techniques . The following equation is a second order nonlinear function
which has a tansig transition between the upper and lower saturation regions:

n(B-g.n) for 0<n<L
f(n)= .(4)
n(B+g.n) for-L<n<L
where B and g represent the slope . and the gain of the nonlinear function f (n) between

the saturation regions -LI and L. The block diagram of the sigmoid activation function
implementation using this process is shown in Fig.(9).

n | |
: register > =, f(n)
accr = S 1=
A | ; .u£>?if
’ B - >/ mu

Fig. (9) block diagram of the tansig activation function implementation.

The VHDL code for an approximated tansig function as a package is given in Table (4).
The input parameters have been set for an integer range from 0 to 255.

Table(4) VHDL code for implementation tansig activation function as a package.

library IEEE:
use IEEE.3TD LOGIC 1164.all;
use IEEE.STD LOGIC ARTTH.ALL:
use IEEE.STD LOGIC SIGNED.ALL;
backage tansig funi i=s
function tahsig (sSignal an @ zigned) return signed;
end tansig funi ;
backage body tansig funi i=
function tansig (signal an @ signed) return signed is
variable nnh: sSigned(? downto 0);
variable no:integer range —-125 to 127;
variable ttL:integer rahnge —-125 to 127;
variabhle f:integer range -128 to 127:;
variable d:integer range —-128 ta 127;
variable ww:integer range —-125 to 127;
variable www:integer range -—-3Z2000 to 3Z2000;
constant ss:integer range 0 to 127 := 127:
constant mm: integer range 0 to 255 255;
hegin
d = conv_integer (an |:
if ([ 4 »>= 0 ) then £ := nm
glse £ := mn + d ; end if;
wgw = £ % 4 ;
258 ; LL 1= ww ;
32 ]| then no = =3;
<= =32 )Jthen no = -ss;
e o send if
nnn (= conv_sSigned (no , 8):
return nnmn;
end tansig;
end tansig funi;

YHDOL code
package
far tansig function

|
o

m
i
i}
H
Hh
| A | RS

8-hit signed neuran
output
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The resulting simulation timing diagram of the neuron with tansig function is shown
in Fig ( 10 a) . The inputs and weights of the neuron is defined as 4- bit and the output is
defined as 8- bit and all of singed data type .The approximated parameter of tansig function

are of integer data type. Fig.(10b) shows the RTL

implementing tansig neuron.

hardware schematic circuit for

Noww:
1000 ns f ne =00

600 200 ns 1000
|

| | |
= p1[3:0]

= @ p2[3:0]

= @ p30E0]

ocoND O

= Wiz
clke

N
= e -3 &K o i 12

18, ST 55 b | E]

¥ earetic:
N th tansig | =aPProxima tion neuron \
activation function S tequRton

(b)

Fig .10 (a) Time diagram ,(b) hardware circuit, of implementing neuron with tansig

activation function.
22



Al-Rafidain Engineering Vol.17 No.2 April 2009

In order to make easier visualization of the result of hardware Implementation of
tansig function , a comparison between tansing defined by kwan ( equation ( 4 ) ) and the
Implemented result is presented in Fig.( 11 ) . This clearly shows that the hardware
realization of the tansig function provide a reasonable approximation of this function .

a0 T

B0 —*

AL - A Kwan approx. |
a of n

20 F -

40 -

G0 - -

_BD 1 1 1 1 1

150 -100 -50 r S0 100 150

n

Fig. (11) Tansig activation function hardware results.
5. Synthesis and Implementation Results

As a result of Synthesis and Implementation of artificial neuron with three different
activation function ( hardlims , satlins , tansig ) on a Xilinx XC3S500E FPGA device .
Table ( 5) give performance and resource use summary for all implemented 8- bit neurons .
As it can be seen , the hardlims function require a very few hardware resource in comparison
with the tansig function. The operation speed in all cases gives a good results and shows the
advantages of using FPGAs in neural realization.

Table (5) Comparative data for the implemented artificial neurons
Neuron type Hardlims satlins tansig

Dewvice utilization

..............................................................................................................

Mo.of Slices (4656) 9 11 39
No. of slice FF (9312) 8 8 8
No. of 4 input LUTs (9312) 14 21 72
No. of bonded 10Bs (232) 25 25 25
No. of Multiplier (20) 3 3 4
No. of GCLKs (24) 1 1 1

Time sumanry

....................................................................

Max path delay 15.22 ns 16.84 ns 35.95 ns
Max operating frequency 65 MH=z 59 MHz | 27.5 MH=z

Target device : xc3s500e fg320 -4
Software version @ 1SE 8.2i
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6. Conclusions

The results of this work successfully demonstrate the hardware  implementation
of artificial neuron with three different activation functions using Xilinx FPGAS . This
allows comparisons to be made between the hardware realization of these neurons , which are
regarded as basic building block of artificial neural networks .

The tansig function approximation problem has been employed and demonstrate the
validity of hardware implementation. The timing diagrams show the accuracy of the results
and to enable comparisons with actual result . The operation frequency in all cases is very
good and it gives a clear idea of the advantages of using FPGAs, since multiple modules can
be working in parallel with a minimum reduction in performance due to the increased number
of interconnections.

Finally , it can be say that FPGAs technology and their low cost , and reprogrammability
make this approach a very powerful option for implementing ANNS as an alternative to the
development of custom hardware.
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