

Al-Rafidain Engineering Journal (AREJ) Vol.28, No.2, September 2023, pp. 284-295

Al-Rafidain Engineering Journal (AREJ) Vol. 28, No. 2, September 2023, pp. 284-295

FPGA-SoC Based Object Tracking Algorithms:

A Literature Review

Marwan Abdulkhaleq Al-yoonus* Saad Ahmed Al-kazzaz**

marwanathy1972@uomosul.edu.iq kazzazs60@uomosul.edu.iq

* Electrical Engineering Departement, College of Engineering, University of Mosul, Mosul, Iraq

** Mechatronics Engineering Departement, College of Engineering, University of Mosul, Mosul, Iraq

Received: March 13th, 2023 Received in revised form: April 20th, 2023 Accepted: April 27th, 2023

ABSTRACT

Systems for object detection and tracking are becoming increasingly important in practical applications today.

Many research and development groups are interested in improving the performance of such systems, and numerous

methods have been developed and proposed. Additionally, computer vision is constantly developing and implemented on

reconfigurable and embedded systems. The purpose of this study is to present past and recent research works in the field

of visual tracking systems that used FPGA and FPGA-SoC platforms. The study includes a brief description of several

popular algorithms related to the main characteristics and in which field is preferred. Resource utilization was also

considered in this study to present the most and the least resources used to implement different algorithms. The study

found that flip-flops (FF) and lookup tables (LUT) are usually used, while BRAM, DSP, and multipliers had the lowest

percentage utilization. Due to the recent development in the production of advanced processing systems, there is an

increase focusing on employing FPGA-SoC platforms in visual surveillance systems. The reason behind that is their

ability to implement complex processing using both hardware and software co-design to gain high performance in less

design time compared with using only FPGA-based platforms.

Keywords:

Background subtraction; detection algorithm; frame rate; tracking algorithm; FPGA resources.

This is an open access article under the CC BY 4.0 license (http://creativecommons.org/licenses/by/4.0/).

https://rengj.mosuljournals.com

Email: alrafidain_engjournal1@uomosul.edu.iq

===

1. INTRODUCTION

 Moving object tracking is recently

employed in wide applications for example;

military, driverless vehicles, industrial, etc. The

need for visual object tracking is due to the lack

of another tracking system under different special

cases. Electromagnetic waves and sonic waves

are used for many years for detecting and tracking

moving objects. Unfortunately, such systems are

inefficient, especially for short distances and

harsh environments in addition drone detection

and tracking nowadays become more interesting

for many researchers due to the failure of radar

systems and other traditional tracking systems

from this point of view, visual tracking become

the trend of many research groups. In general

visual tracking systems depend open the sensors

(such as a digital camera) and hardware as well as

software algorithms.

 Object tracking is a central task

contained by computer vision systems. The

production of high-powered computers, the

accessibility of high class and low-cost video

cameras, and the growing need for robotic video

analysis has created an excessive deal of attention

in object tracking algorithms [1]. Tracking

moving object, guessing the area of the moving

object can really reduce extensive searching and

make tracking system performance faster [2].

Practically, no idealistic system structure exists to

process perfectly all kinds of problems within

changed background models. To gain actual

implementation for this kind of system, trade-offs

mostly be made between system the robustness of

the system and the system performance like

mailto:marwanathy1972@uomosul.edu.iq
mailto:kazzazs60@uomosul.edu.iq
http://creativecommons.org/licenses/by/4.0/
mailto:alrafidain_engjournal1@uomosul.edu.iq

Marwan Abdulkhaleq Al-yoonus: FPGA-SoC Based Object Tracking …... 285

Al-Rafidain Engineering Journal (AREJ) Vol. 28, No. 2, September 2023, pp. 284-295

resolution, frame rate, and so on. The main

bottleneck of many image processing systems is

the Memory usage [3].

 Many different approaches have been

proposed in the last 40 years, to determine the

optical flow which is a technique used for

determining the motion of objects in a video by

measuring the change in pixel intensities over a

set of frames [4]. An optical flow is incorporated

into computer vision systems that carry out tasks

like object detection and tracking detection [5].

 The implementation of algorithms using

FPGAs offer a good balance between

development flexibility, algorithm testing and re-

configurability, real-time performance, and costs

[6] [7]. A SoC enables the integration of current

hardware (HW) acceleration and software (SW)

libraries into a single, small device. As a result,

this technique enables reductions in both size and

power usage [8] [9].

 Typically, the algorithms are not ideal

for hardware implementation as such, keep the

amount of logic in minimum. Reducing the total

number of element logics also present smaller

power dissipation, which is significant matter in

robotic and mobile applications. An outcome of

adjusting algorithm to hardware implementation

may result a reduction in accuracy. Accuracy

reduction is not a problem in some applications

because accuracy is not a big deal in that

particular application. Many of the systems

introduced in this review paper are suitable for

adapting the algorithm to FPGA but others need

to use both hardware/software implementations

[1].

 It is challenging to track an item, and it

becomes even more challenging when it must be

done on an embedded device with restricted

resources. The first choice is to separate hardware

and software, with software having the

advantages of flexibility and speedier design and

hardware having the advantage of high

throughput [10]. Pre-filtering and feature

detection are performed at the pixel level by the

FPGA [11].

 This paper is concerned on the research

papers published from 2009 and upward. All the

chosen papers (Nineteen) used an FPGA and

FPGA-SoC platforms to process image or video

signals. The selected papers subject depending on

the implementation of object detection and object

tracking algorithms on different devices. In most

of the research papers, the review was focused on;

the used algorithm, image size, frame rate

(throughput), used FPGA device, resources

utilization, and Power consumption.

This paper is organized in five sections. After the

first section, introduction, an overview of

commonly used algorithms in visual systems is

presented in section 2. The literature survey was

given in section 3. Important parameters summary

gained from the survey section was outlined in

section 4. Finally, the discussion and conclusions

part found in section 5.

2. OBJECT DETECTION AND TRACKING

ALGORITHMS

 To recognize an object from a set of

photos, a method or algorithm is needed to pick

out key features [12]. Various algorithms have

been put forth from time to time to increase the

tracking process' efficiency. However, no

algorithm has yet been created that will function

well in all environmental situations [13]. Some

algorithms may not function properly when the

camera is used to record the video moves, while

others may not function properly in conditions of

intense lighting. Due to the loss of some

information when converting a 3-D environment

to a 2-D image, real-time processing, noise in the

images, changes in scene illumination, complex

object shapes, motion, and partial or complete

occlusion, the tracking process is in and of itself

an extremely complex task [14] [15].

 There are many algorithms proposed in

the field of visual object tracking. Some of them

used as preprocessing stage in visual tracking

system which include detecting the objects and

others used for tracking objects [16]. Figure 1

summarized the most common algorithms used in

visual detecting and tracking systems selected

algorithms.

Visual detection and tracking algorithms can be

split into two parts; detection algorithms and

tracking algorithms. A short description of the

commonly used algorithms are presented in the

next subsection.

Fig.1 Common detection and tracking algorithms.

2.1 Object detection algorithms

 286 Marwan Abdulkhaleq Al-yoonus: FPGA-SoC Based Object Tracking …...

Al-Rafidain Engineering Journal (AREJ) Vol. 28, No. 2, September 2023, pp. 284-295

 The first step or the preprocessing stage

in surveillance system is object detection. A short

description of the common detection algorithms

shown in figure 1are presented here:

a- Back Ground Subtraction (BGS)

 Detects the actual background and

extracts objects that do not belong to it. To

recognize between moving and stationary objects,

the BGS algorithm requires three sequential

frames and a reference image of a stationary

background [17] [18]. In order to perform

automatic threshold selection, subtraction

operation, and pixel-wise classification, a

background subtraction model based on

Horprasert acquires a reference image to model

the background of the scene. This algorithm work

correctly when the camera is fixed [15] [19].

b- Mean-Shift algorithm

 Due to the unsupervised nature of this

algorithm, it can be used in a variety of

autonomous applications where no input

parameters are provided by the user. The main

challenge is computational complexity and scales

poorly with both the number of pixels N2 and

number of iterations (k) as O(kN2) [20].

Implementing parallel processing and pipelining

of such pixels on the FPGA resulting in a

decrease in computational complexity for real-

time application system. In contrast to its

effectiveness when the camera is moving, it is a

requirement of this algorithm that there be no

occlusion [15].

c- The Camshift algorithm

 This is based on the Mean-shift

algorithm and it was improved to use the object

color information to inform the Mean-Shift

algorithm [21]. This method is unaffected by

changes in object shape. It can effectively address

the partial occlusion and object deformation

problems with a higher operating efficiency. The

limitation is that the histogram of the target image

records the probability of the color appearing, so

the algorithm requires that the object be manually

specified before it can start [2].

d- Gaussian mixture model GMM algorithm

 This type of algorithm is considered a

probabilistic algorithm that is especially well

suited to detecting moving objects in multimodal

backgrounds with repetitive motion-showing

objects like waves, moving leaves, and flickering

light. In the presence of changes in illumination,

the GMM algorithm performs well [22] [23].

e- Harris corner (HC) detection algorithm

 It has enormous parallel processing

power, pixel-wise operation, and operator noise

immunity. It performs well when detecting L-

shaped corners [11].

f- Canny algorithm

 It is an optimal edge detection technique

which provide good detection, clear response, and

good localization. It is suitable for

implementation in a pipeline parallel architecture

on the FPGA [24] [25].

g- Principal Component Analysis (PCA)

algorithm

 It is a method used in many different

disciplines, such as artificial vision, power

electronics, and statistics. The PCA technique for

image processing enables the reduction of

redundant information (retaining only essential

information) of the initial variables and the

evaluation of the degree of similarity between two

or more images by analyzing only the

fundamental features present in the transformed

space [26].

h- Convolutional Neural Network (CNN)

algorithm

 A CNN is a type of multi-layered neural

network. In computer vision, CNN has been

rising to greater prominence. The major benefit of

CNNs is their capability of self-learning, meaning

that the more images they are exposed to, the

better they become at classifying objects [12]

[27]. CNN requires a lot of computing power.

During deployment and training, it uses a

tremendous amount of computing power. Due to

the potential tradeoff between power consumption

and reconfigurability, FPGA-based CNN

accelerators received a lot of research attention

[28].

2.2 Object tracking algorithms

 The motion can be determined in a video

sequence by subtracting two frames acquired after

each other. This allows one to see where the

movement (change) has occurred but does not

provide much information regarding its direction

or speed. However, more sophisticated vision

systems require this knowledge. Consequently,

the idea of optical flow was presented [29] [5].

Optical flow is a vector that represents the motion

of a target or an object in an image sequence

(video) [30]. There are various methods for

optical flow computation:

A)- Horn – Schunck (HS) algorithm

Marwan Abdulkhaleq Al-yoonus: FPGA-SoC Based Object Tracking …... 287

Al-Rafidain Engineering Journal (AREJ) Vol. 28, No. 2, September 2023, pp. 284-295

 Horn–Schunck is a global regularized

algorithm that obtains a globally optimized

solution with iterative calculation, so the

characteristics of the entire image are considered,

in other words, on the whole picture, the optical

flow should be uniformly smooth. As a result,

each pixel's calculated flow in a small

neighborhood is similar [5] [30].

B)- Lucas – Kanade (LK) algorithm

 Also known gradient-based optical flow

estimation algorithm. The LK algorithm took into

account a small neighborhood of each pixel rather

than looking for the global minimum features of

the entire image. Its theory is based on the

observation that a pixel moves in the same way as

its nearest neighbors.

As a result, unlike the HS algorithm, the

assumption introduced by the LK algorithm only

needs to be satisfied locally [5]. Embedded

hardware can successfully implement the Lucas –

Kanade algorithm [11]. In the case of significant

motion between consecutive frames, this

algorithm's accuracy declines. Use of a high-

frame-rate scheme is the solution [31] [32] [33].

C)- Kalman filter algorithm

 When measurement values are uncertain,

the Kalman filter, a minimum mean-square error

estimator, provides the most accurate estimation

of a linear dynamic system model, including an

object's position, velocity, and true measurements

[34]. Object tracking and motion detection in

dynamically positioned vehicles are two typical

applications of Kalman filter adaptation [35].

3. LITERATURE SURVEY

In this section, the research papers which

were highlighted in this review paper are

separated into two groups, the first group

implemented their proposed systems using only

FPGA and the other group implemented their

proposed systems by using FPGA-SoC platforms.

3.1 Research work based on FPGA platforms

 Hongtu Jiang et al. [3] proposed a

dedicated hardware architecture for real-time

segmentation at VGA resolution and 25 frames

per second. The authors presented an FPGA

platform with a number of memory access

reduction schemes, which reduces memory

bandwidth by more than 70%. The video

sequences with three Gaussian distributions per

pixel were used to achieve the real-time

segmentation performance. The off-chip DDR

SDRAM that houses the Gaussian parameters.

Hardware complexity was reduced by updating

only one Gaussian parameter at a time. The

proposed hardware's bottleneck is memory usage.

A complete implementation of the PCA

algorithm was presented by I. Bravo et al. [26] on

reconfigurable hardware (FPGA) devices to

detect new objects in a scene. Different

components of the PCA algorithm's traditional

sequential execution have been parallelized.

FPGA was used to implement the entire system.

Each algorithm part’s computation time is also

declared. A 128 MB SDRAM memory bank was

included in the system and was external to the

FPGA.

The lane detection and tracking

procedures were created and implemented by

Marzotto et al. [7] in a single FPGA device. The

suggested system architecture consists of self-

contained logic modules that don't require the

assistance of programmable microcontrollers,

DSP processors, or external memories because

every module was fully implemented inside the

FPGA. The authors clearly described the steps in

the pre-processing pipeline procedure. The

suggested system is flexible enough to adapt to

different road conditions without pre-setting. The

tracking algorithm is made up of three separate

Kalman filters (KF) that each work on three

different parameters. The Xilinx System

GeneratorTM for DSP is the foundation for the

entire FPGA system implementation. Due to the

system functionality only utilizing about 30% of

the Spartan-3A's hardware resources, an FPGA

with fewer hardware resources can be used.

F. Barranco et al. in [31] implemented

the optical flow core and the multi-scale

extension using high level Handel-C. The PCI

interfaces, off-chip memory, and memory

controller unit (MCU) are all implemented using

the RTL language VHDL. The system

architecture, the pipelined stage scheme, and the

primary hardware resources were all described by

the authors. Additionally, demonstrated that the

highest clock operation frequency was possible

with minimal resource use. There were two

different abstraction levels used in the hardware

implementation. In the used device, the mono-

scale implementation employed 10%–15% of the

resources, whereas the multi-scale used about

60%. While the frame rate was decreased to about

a tenth of the mono-scale approach. The authors

increased the precision results by about three

times.

I. Ishii et al. used an enhanced gradient-

based algorithm based on the LK method in Ref

[32], which can adaptively choose an artificially

variable frame rate in accordance with the

estimated optical flow's (OF's) amplitude to

 288 Marwan Abdulkhaleq Al-yoonus: FPGA-SoC Based Object Tracking …...

Al-Rafidain Engineering Journal (AREJ) Vol. 28, No. 2, September 2023, pp. 284-295

precisely detect it for entities moving at both high

and low speeds in the same image's grayscale 10-

bit per pixel representation. The optical flows

were estimated at 1000 f/s for every of the

1024×1024-pixel image's 1024 block regions of

32×32 pixels. Software on the PC carried out the

operations in the computation of the 1024 blocks

at the block level.

Authors employ two FPGAs: one is used for

processing and displaying images, and the other

for implementing user algorithms on hardware.

M. Genovese et al. in Ref.[36] proposed

an FPGA implementation of Open source

Computer Vision software library which is

developed by Intel (OpenCV). Variety platforms

used to synthesiz and implemente GMM

algorithm, including the Stratix-IV Altera FPGA

and the Virtex-6, Virtex-5, and Spartan-3 Xilinx

FPGA. The circuit used three Gaussian

distributions for each pixel when processing

grayscale videos. The proposed circuit processes

13 parameters for each pixel, including the

luminance value and 12 Gaussian parameters for

the pixel's statistical model. Utilizing the Stratix-

IV platform from Altera FPGA, high frame rate

and operating frequency were achieved.

A pipelined, parallel optical flow

algorithm developed by G. K. Gultekin et al. [37]

significantly boosts system throughput by using

multiple clock domains. The memory interface

circuit operates at a higher clock rate than the

calculation modules, which aids in removing the

design's memory bottleneck. Authors used the

divide by powers of two methods to approximate

the division operation. The performance of the

proposed hardware implementation's algorithm is

compared to that of a PC implementation by the

authors. The comparison revealed that the

reference FPGA implementation ran faster than

the PC implementation by about 146 times.

Additionally, the power used by FPGA

implementation is only 844.38mW, or about 1/40

of the power used by a 1.66 GHz personal

computer processor. The 200 MHz (SSRAM

controller) and 50 MHz (optical flow controller)

clocks are produced by a phase locked loop (PLL)

internal circuit.

 In Ref. [11], M. Tomasi et al. proposed

an FPGA+DSP system that outperformed

ARM+DSP and DSP only configurations by

about 20 and 3 times, respectively. In the FPGA

platform, a fine-grain pipeline was utilized by the

authors to implement Harris corner detection,

with a data rate of 60 megabytes per second

(MBPS). In order to achieve a total frame rate of

160 fps for VGA images, the DSP simultaneously

receives and tracks the features that the FPGA has

detected. For comparison, the performance was

split into detection and tracking. An IP core for

Harris corner detection was created. The FPGA-

based detection algorithm was executed, and the

DSP board—which serves as the FPGA's co-

processor—ran the LK algorithm to track the

detected feature points. Authors didn’t state the

hardware architecture design of the used

algorithms. Instead, they presented an analysis of

the processing times and hardware performances

in three architectures used: FPGA, DSP, and

ARM. FPGA proved the faster speed performance

of 4.9ms for VGA images compared with 138ms

for ARM and 10.6ms for DSP.

 In their novel hardware architecture, and

instead of storing the original input image, H.-S.

Seong et al.[33] suggested storing the input image

following the Gaussian filtering process. To

reduce the external memory access to a quarter of

the original data, the Gaussian-filtered image was

downsampled in both the horizontal and vertical

directions. The total memory access is reduced by

75% when using this technique (2:1 sub-

sampling) in both the vertical and horizontal

directions. With a slight increase in hardware

resources, the external bandwidth was reduced.

Instead of using multipliers, which consume more

time and resources, the authors used the

streamlined Gaussian coefficient, which only

requires shifter and adder operations. The authors

went into great detail about the suggested

hardware organization for the LK algorithm

design.

 S. Sajjanar et al. in Ref [15] presented a

complete system module including various sub-

modules which are the controller, storage,

display, and camera capture modules. The

description of the RTL blocks ports of each

Module explained clearly. The system used three

memory modules: a display VGA module, a

frame buffer module, and a background memory

module. The incoming and reference frames were

stored in the first two, and the resultant frame was

stored in the third. The camera register was

configured to automatically obtain data in the

YUV form, which represent each pixel of an

image using 24 bits (eight bits for each Y, U, and

V). In later stages, only the 8 bits corresponding

to Y, which denotes an image's grayscale, are

used.

A. Arif et al. [17] described an

implementation of an algorithm to process traffic

camera image sequences in real-time. The

algorithm requires four frames (images) as input:

the frame being studied, the frame before it, the

frame after it, and the reference stationary

background. The algorithm compares the

Marwan Abdulkhaleq Al-yoonus: FPGA-SoC Based Object Tracking …... 289

Al-Rafidain Engineering Journal (AREJ) Vol. 28, No. 2, September 2023, pp. 284-295

corresponding pixels from three subsequent

frames to determine the weighted difference.

When the difference is 0, it means that the

corresponding pixel hasn't moved at all. Thus,

there is no need to update the reference

background. The algorithms are written in

OpenCL code. The power consumption of the

background subtraction and Lucas-Kanade

algorithms on each platform, FPGA, CPU, and

GPU was compared by the authors. FPGAs'

computational prowess and power effectiveness

demonstrated that they are excellent candidates

for applications that call for intensive data

processing, particularly in real-time.

P. Hobden et al. in Ref.[12] provide a

solution method to overcome the limited floating-

point resources but keep running in real-time

operation. Two modules were included in the

proposed method: tracking and detection of

unmanned aerial vehicles (UAVs) using neural

networks (NNs). The tracking module used a

background-differencing algorithm, while the

UAV detection used a modified CNN algorithm.

Authors compared the implementation of

MATLAB and Xilinx Deep Learning Processor

Unit (DPU) on the UltraScale ZCU102 against

their model by using the data set of the same

images.

3.2 Research work based on FPGA-SoC

platforms

 U. Ali and M. B. Malik [21] presented a

hardware/software co-design architecture for the

well-known kernel-based mean shift tracking

algorithm. The target's color histogram was used

in the design as a tracking feature. The target was

located in the following images by maximizing

the statistical match of the color distributions. The

system was able to track multiple targets at frame

rates of up to hundreds of frames per second by

localizing them using gradient-based iterative

search as opposed to exhaustive search. The

authors discussed how long various tasks took to

complete. All computationally intensive tasks

were mapped on hardware to achieve maximum

frame rate, while the prediction filter and main

tracking loop update were implemented in

software to simplify target initialization

procedures by taking inputs from the user.

 An FPGA-based embedded architecture

with low degradation that can extract the

background in environments with limited

resources was proposed by R. Rodriguez-Gomez

et al. [19]. The MicroBlaze processor, which was

employed to create the benchmark background

model and to update it over time, is a part of the

suggested architecture. Using fixed-point

operations, a specific hardware module carried

out the subsequent stages of subtraction and

pixel-by-pixel classification. The authors ran the

system modules with different clock frequency

domains. To make the FPGA clock supply

networks simpler, the authors ran the suggested IP

core BGS at the same frequency as MicroBlaze

and system buses. The architecture's hardware

complexity was greatly reduced during the

training phase by precalculating and storing a

number of constants. Division operations are

avoided by using multiplications instead, which

use less hardware. The fundamental Horprasert

model was enhanced to effectively handle

shadows, which represents a significant

advancement in common scenes.

 S. Guo et al. in Ref. [38] used the

processing (PS) to run a Gaussian background

model-based detection program to detect moving

objects entering the field of view. The

reconfigurable area of the Programmable Logic

(PL) was programmed with the accelerator

portion of the Gaussian background model

(FPGA subsystem). The Compressive tracking

(CT) algorithm was employed for object tracking.

After being converted to 320x240 8-bit grey

scale, the acquired images are saved in the image

preprocess module using DDR3 RAM. The

diagrams for the background model and the

tracking model were thoroughly explained by the

authors. Additionally, a performance comparator

with and without a hardware accelerator was

presented. The average tracking frame rate for the

proposed system was 9.48 times faster than that

of the ARM processor-based pure software

solution. There were some unavoidable issues

with the proposed system. Only videos with a

static background are processed by the detection

component. Additionally, the drift issue restricted

the tracking component, which ultimately caused

the tracking operation to fail.

 Because of the stability of the Mixture of

Gaussian (MoG) algorithm for background

subtraction, which is implemented in FPGA, G.

Conti et al. in [8] selected it for HW acceleration.

The robustness of the Kalman filter, which is

based on a statistical model, led to its

implementation in PCs for tracking. Gray scale

and RGB were used by authors to measure the

speed differences between them. Although the

results from the RGB version of the algorithm

were more accurate, it was less efficient than the

gray-scale version. More pixels are

simultaneously stored in FPGA memory using

grayscale. The RGB version offers the ideal

balance between accuracy and processing time.

 290 Marwan Abdulkhaleq Al-yoonus: FPGA-SoC Based Object Tracking …...

Al-Rafidain Engineering Journal (AREJ) Vol. 28, No. 2, September 2023, pp. 284-295

 J. G. Pandey used the mean shift-based

moving object tracking algorithm in [39]. A

detailed explanation of the algorithm

implementation in the FPGA. the circuits utilized

as intellectual property (IP) cores in the

framework for the implementation of a mean shift

algorithm based on the kernel for tracking moving

objects. The computation of the Bhattacharyya

coefficient, mean shift vector, and associated

circuits implemented using fixed-point binary

logarithmic and antilogarithmic units. The

tracking algorithm was initially developed in C,

tested using a number of saved video files, and

then implemented using RTL-level VHDL code.

 For the tracking and detection of

multiple objects, P. Babu et al. [35] presented a

multi-dimensional Kalman filter (MDKF) for

linear systems with updated state vector and

covariance equations. Additionally, the hardware

multi-dimensional Kalman filter implementation

on the Zynq SoC with efficient resource

utilization was shown. On various benchmark

datasets, the MDKF tracking algorithm was used

to estimate performance and accuracy. The only

resource limitation was the usage of DSP blocks

in the Zynq SoC, which may run out as the

number of states for measuring uncertainties

increased.

 To process different numbers of pixels

concurrently depending on the scale and without

using additional external memory to store

temporal values, a multi-scale method, gradient-

based algorithms, Lucas-Kanade and Horn-

Schunck were implemented on a ZCU platform

with a Zynq UltraScale+ MPSoC FPGA by K.

Blachut et al.[5]. For each potential input vector,

Look-Up Tables (LUT) were created with pre-

calculated values. The four pixels per clock data

format used in the 4K video stream allows authors

to lower the lower frequency to 150 MHz needed

for real-time processing.

 P. Hobden et al. discovered a way to

deal with the issue of scarce floating-point

resources while preserving real-time applications

in ref. [12]. The solution consists of modules for

neural network-based UAV detection and

tracking of unmanned aerial vehicles (UAVs).

While the UAV detection used a modified CNN

algorithm, the tracking module used a

background-differencing algorithm. The CNN

algorithm was used to deliver a feedback path so

that it could be verified that the tracking had

locked onto the right object and not the wrong

one. In order to best allocate hardware resources

on the PL unit, the authors implemented a few

layers in the Advanced RISC Machines (ARM)

PS core of the Zynq, and they also carried out the

training using MATLAB on a PC.

4. SUMMARY OF THE REVIEWED

PAPERS

 In this section, the most crucial factors,

including the algorithm chosen, the platform is

chosen, the frame rate, the image resolution, the

frequency of use, and the power consumption of

the preceding research papers are collected in

table 1 to simplify the performance comparison

for the readers while table 2 shows the number of

resources utilization and the percentage of the

used resources to the total number for most of the

selected papers that write the results in details. It

is clear that multipliers are the less used resources

compared with others because they drain FPGA

resources.

 From table 1, it is clear that there is a

tradeoff between image (target) capture size and

the frame rate. Other indication that can be

obtained from the comparison, authors in ref. [33]

[36] implement the same algorithm in different

platforms while authors in ref. [5] implement two

different algorithms on the same device as

explained in table 2. From all the selected papers,

most hardware implementations of detecting and

tracking algorithms based on FPGA devices, one

of the selected paper employed FPGA–DSP

platforms and the remainder employed the

popular recent technology based on

hardware/software (co-design).

 The extracted information from the

mentioned researches about the numbers and

resources percentage utilization related to; slices,

FF, BRAM, DSP, LUT, and multipliers are

collected in table 2. Although the algorithms and

applications presented in this paper are different,

a computation of the total resources for all the

used devices in the research papers was presented

in figure 2. The percent ratio between each

resource type to the total resources (regardless of

the type of resource) was calculated and plotted to

give an overview of the most used resources

among the others in such application to provide

an indication for researchers and industrials. Any

not specified resources by the researchers are not

considered and not included in figure 2 so to

reach a reasonable approximation ratio as

possible.

Another comparison presented in figure 3

explains the percentage ratio between the usage of

each resource type to the total number of the same

resource.

 From figure 2 and 3 it is shown that

BRAM, DSP, and multipliers are the limited

FPGA resources. It is clear that multipliers are the

Marwan Abdulkhaleq Al-yoonus: FPGA-SoC Based Object Tracking …... 291

Al-Rafidain Engineering Journal (AREJ) Vol. 28, No. 2, September 2023, pp. 284-295

lower used compared with others because of their

resource-consuming. Flip-flops (FF) are the most

used resources and the most fabricated numbers

among the others. Slices come in the second order

after FF.

Fig. 2: The percentage ratio for each resource

utilization to the sum of the total number of all

resources type.

Fig 3: The normalized percent ratio for each

resource utilization.

5. DISCUSSION AND CONCLUSIONS

 In this review paper and from the selected

subject area in the field of common detection and

tracking algorithms in surveillance systems, some

of the reviewed documents proposed the hardware

implementation of one or two algorithms using

just FPGA platform, other articles used both

hardware/software Co-design (also called hybrid

system).

From figure 2 it is clear that flip-flop (FF) is the

most used among other FPGA resources. The other

logic cell is the look-up table (LUT). On the other

hand, multipliers are rarely used because it

consumes more devices and computational time.

Table 1: Performance comparison of FPGA based for different visual algorithms of recent and earlier

literatures. (-) indicates not specified value.
Ref. Algorithm Platform Frame rate/

Resolution

Freq. Power

consumption

year

 [3] Segmentation
algorithm

Virtex-II
pro Vp30

640x480
25 fps

25MHz

 _ 2009

[21] Mean shift tracking

algorithm

Spartan-3e

XC3S1600E

64x64

290 fps

50 MHz _ 2010

[26] Principal Component
Analysis (PCA)

XC2VP7 256 ×256
120 fps

-100 MHz
-Sensor

Clk.= 66MHz

 _ 2010

[7] Lane Marking Pattern
Search

Spartan-3A DSP 3400 752 x 480
30 fps

128.2 MHz _ 2010

[19] BGS based on

Horprasert

XC3SD3400 Spartan-

3A

32.8 fps

1,024×1,024

66.5 MHz 5.76W 2012

[31] Lucas-Kanade
-*mono-scale

-**multi-scale

Virtex-4 XC4vfx100 640 x 480
- *270 fps

- **31.9 fps

- *83MHz

-** 44MHz

 _ 2012

[32] Lucas–Kanade
(gray-level)

2-FPGA Xilinx
XC2VP100

1000 fps
1024×1024

90MHz _ 2012

[40] GMM

(gray-scale)

Stratix-IV

SGX230HF35C2

1920 × 1080

47 fps

98.12MHz _ 2013

[37] Optical flow
(based on HS)

EP2C70
Cyclone-2

256 x 256
257 fps

50 MHz 844.38mW 2013

[11] -*Harris corner

(detection)

-**LK (tracking)

xcv4fx60

Virtex-4

-*29 fps

1,920x1,080

-**160 fps
640x480

62 MHz -686mW,

for FPGA

-1,697mW,
for DSP

2014

[33] Lucas-Kanade (LK) -Virtex-6 170 fps 94MHz _ 2015

1.39%

8.92%

0.025% 0.026%

6.74%

0.001%

Slices FF BRAM DSP LUT Multp.

53.49%

27.07%

43.68%

31.11%

11.04%

19.52%

Slices FF BRAM DSP LUT Multp.

 292 Marwan Abdulkhaleq Al-yoonus: FPGA-SoC Based Object Tracking …...

Al-Rafidain Engineering Journal (AREJ) Vol. 28, No. 2, September 2023, pp. 284-295

-Virtex-4 800x600

[15] Modified BG

Subtraction

Zynq-7000

XC7Z020

30 fps

640x480

25MHz _ 2016

[38] -Gaussian BG

-CT (gray-scale)

Zynq-7000

XC7Z020

89.2 fps

320x240

667 MHz 2.99 W 2017

[17] - BG subtraction

- LK algorithm

Virtex-7

XC7VX690T-2

29 fps

1280 × 4

200 MHz -2.760W (BG)

-8.385 W (LK)

2018

[8] Gaussian (MoG)

Zynq-7000

XC7Z020

640x480

162 fps

_ - 2.297W-RGB

-2.025W-Gray

2020

[39] Mean shift Virtex-5 xc5vfx70t 60 fps

640 × 480

25.175 MHz 315 mW 2021

[35] Kalman filter ZynqTM-7000

Artix-7

91 fps

 -

140 MHz 780 mW 2021

[5] - LK
- HS

UltraScale +
 ZCU 104

60 fps
3840 × 2160

-300MHz(LK)
-150MHz(HS)

5.70 W 2022

[12] - BG

-CNN

Zynq UltraScale

XCZU9EG

54.67 fps

 -

220MHz 5.5W 2022

Table 2: Resource usage of the overall design on the FPGA devices.
Ref. Slices FF BRAM DSP LUT Multp. FPGA device Platform

[3] 6107

44.6%

4273

-

84

3.43%

- - - VirtexII pro Vp30 FPGA

[21] 3160

20%

4187

14%

9

25%

- 3516

11%

3

8%

Spartan-3e

XC3S1600E

Co-design

H/S

[26] 4225

86%

- 40

91%

- - 43

98%

XC2VP7 FPGA

[7] 8398

35.2%

- 32

25.4%

34

27%

- - Spartan-3A DSP

3400

FPGA

[19] 15522

65%

183689

38%

44

35%

48

38%

19616

41%

- XC3SD3400

Spartan-3A

Co-design

H/S

[31] 26036

61%

24694

29%

112

29%

62

38%

31796

37%

- Virtex-4 XC4vfx100 FPGA

[32] 14312

32%

26551

30%

28

6%

- 4935

5%

80

18%

Xilinx XC2VP100 FPGA

[40]

1010

13.15%

0 - 0 1797

11.69%

0 Spartan3 (xc3s1000)

FPGA
301

4.18%

0 - 0 844

2.93%

0 Virtex5 (xc5vlx50)

265
2.27%

0 - 0 922
1.98%

0 Virtex6 (xc6vlx75t)

81

0.88%

0 - 0 1150

0.63%

0 Stratix-IV

SGX230HF3

[37] 8086
11.9%

151772
13.2%

- - - 6
4%

EP2C70
Cyclone-2

FPGA

[11] 5766

22%

- 59

25%

9

7%

5893

11%

- xcv4fx60

Virtex-4

FPGA+

DSP

[33]

- 16219
2.13%

120
8.3%

54
6.25%

31305
-

- Virtex-6 LX760
FPGA

- 17139

9.5%

132

39%

54

56.25%

43228

24.37%

- Virtex-4LX200

[15] 125
1%

286
1%

120
85%

- 53200
1%

- Zynq-7000
XC7Z020

FPGA

[38] _ 31907

30%

287

102.5%

173

78.6%

41163

77.4%

_ Zynq-7000

XC7Z020

Co-design

H/S

[17] - 241593
28%

1140
39%

1065
30%

264366
61%

- Virtex 7
XC7VX690

FPGA

[8] 11,589

66.6%

11,588

10.89%

135

96.4 %

39

17.7 %

24,170

45.4%

- Zynq-7000

XC7Z020

Co-design

H/S

[39] - 113
0.3%

20
13.5%

48
37.5%

1998
4.4%

- Virtex-5
XC5VFX70

Co-design
H/S

[35] 69997.5

82.35%

80885.28

76.02%

22.11

61.43%

199.98

90.9%

44299.64

83.27%

- ZynqTM-

Artix-7

Co-design

H/S

-LK
[5]

-HS

-

183688
40%

311
100%

861
50%

122734
53%

- Xilinx UltraScale +
ZCU 104

Co-design

H/S - 145872

32%

312

100%

523

30%

104728

45%

-

[12] - - 223
24.45%

220
8.73%

48500
17.7%

- Zynq XCZU9EG Co-design
H/S

Where; FF: Flip-Flops, BRAM: Block RAM, DSP: Digital Signal Processing, LUT: Look-up-table, Multp.: Multiplier.

Marwan Abdulkhaleq Al-yoonus: FPGA-SoC Based Object Tracking …... 293

Al-Rafidain Engineering Journal (AREJ) Vol. 28, No. 2, September 2023, pp. 284-295

 By using gray-scale, more pixels can be stored

in FPGA memory when memory usage is limited

also the processing speed can be increased to

obtain high frame rate.

 Although using RGB version reduce the frame

rate compared with using gray scale but using it

get more accurate results for detection and

tracking. RGB version is the solution for complex

environments.

 By using LUT for the constrained range,

hardware resources can be used more sparingly

and redundant data storage can be avoided. Also

we can get highest clock operation frequency

when use less resources.

 When an algorithm has a computationally

intensive task, it must be implemented in hardware

to achieve the highest throughput (frame rate).

However, if the algorithm needs to interface with

the user, it is worthwhile to implement this portion

of the algorithm in software because it will

facilitate target initialization procedures by

accepting user input. FPGAs' computational

prowess and power effectiveness demonstrated

that they are excellent candidates for applications

that call for intensive data processing, particularly

in real time.

 Other researchers calculate some parameters

that consume many resources and use lookup

tables to save and then use them during operation.

 In comparison to more conventional

approaches, the CNN algorithm is an appropriate

choice for devices with limited DSP slices which

is used for floating-point implementation.

 In some applications it is possible to simplify

the hardware implementation so that shifter and

adder operations can be used instead of multiplier

that cost more resources and time.

 The co-design approach, which was used to

reduce the amount of hardware needed.

Additionally, by optimizing the code at key points

and interfaces, high-level languages like ImpulseC

and RTL descriptions defined using VHDL

enables a reduction in the implementation strategy

and the achievement of high performance.

REFERENCES

[1] Sirpa Korhonen, “’Hardware Accelerated Visual

Tracking Algorithms. A Systematic Literature

Review,” Aug. 2015. [Online]. Available:

https://www.researchgate.net/publication/28108823

8

[2] S. Gong, C. Liu, Y. Ji, B. Zhong, Y. Li, and H.

Dong, Advanced Image and Video Processing

Using MATLAB, vol. 12. in Modeling and

Optimization in Science and Technologies, vol. 12.

Cham: Springer International Publishing, 2019. doi:

10.1007/978-3-319-77223-3.

[3] Hongtu Jiang, H. Ardo, and V. Owall, “A Hardware

Architecture for Real-Time Video Segmentation

Utilizing Memory Reduction Techniques,” IEEE

Trans. Circuits Syst. Video Technol., vol. 19, no. 2,

pp. 226–236, Feb. 2009, doi:

10.1109/TCSVT.2008.2009244.

[4] R. Parekh, Fundamentals of image, audio, and video

processing using MATLAB: with applications to

pattern recognition, First edition. Boca Raton

London New York: CRC Press, 2021.

[5] K. Blachut and T. Kryjak, “Real-Time Efficient

FPGA Implementation of the Multi-Scale Lucas-

Kanade and Horn-Schunck Optical Flow

Algorithms for a 4K Video Stream,” Sensors, vol.

22, no. 13, p. 5017, Jul. 2022, doi:

10.3390/s22135017.

[6] B. M. K. Younis, B. Sh. Mahmood, and F. H. Ali,

“Reconfigurable Self-Organizing Neural Network

Design and it’s FPGA Implementation,” (AREJ),

vol. 17, no. 3, pp. 99–115, Jun. 2009, doi:

10.33899/rengj.2009.42925.

[7] R. Marzotto, P. Zoratti, D. Bagni, A. Colombari,

and V. Murino, “A real-time versatile roadway path

extraction and tracking on an FPGA platform,”

Computer Vision and Image Understanding, vol.

114, no. 11, pp. 1164–1179, Nov. 2010, doi:

10.1016/j.cviu.2010.03.015.

[8] G. Conti, M. Quintana, P. Malagón, and D.

Jiménez, “An FPGA Based Tracking

Implementation for Parkinson’s Patients,” Sensors,

vol. 20, no. 11, p. 3189, Jun. 2020, doi:

10.3390/s20113189.

[9] M. Amiri, F. M. Siddiqui, C. Kelly, R. Woods, K.

Rafferty, and B. Bardak, “FPGA-Based Soft-Core

Processors for Image Processing Applications,” J

Sign Process Syst, vol. 87, no. 1, pp. 139–156, Apr.

2017, doi: 10.1007/s11265-016-1185-7.

[10] F. Kristensen, H. Hedberg, H. Jiang, P. Nilsson, and

V. Öwall, “An Embedded Real-Time Surveillance

System: Implementation and Evaluation,” J Sign

Process Syst Sign Image Video Technol, vol. 52,

no. 1, pp. 75–94, Jul. 2008, doi: 10.1007/s11265-

007-0100-7.

[11] M. Tomasi, S. Pundlik, and G. Luo, “FPGA–DSP

co-processing for feature tracking in smart video

sensors,” J Real-Time Image Proc, vol. 11, no. 4,

pp. 751–767, Apr. 2016, doi: 10.1007/s11554-014-

0413-2.

[12] P. Hobden, S. Srivastava, and E. Nurellari, “FPGA-

Based CNN for Real-Time UAV Tracking and

Detection,” Front. Space Technol., vol. 3, p.

878010, May 2022, doi:

10.3389/frspt.2022.878010.

[13] A. Yilmaz, O. Javed, and M. Shah, “Object

tracking: A survey,” ACM Comput. Surv., vol. 38,

no. 4, p. 13, Dec. 2006, doi:

10.1145/1177352.1177355.

[14] Dr. F. Ali, “Transformation Matrix for 3D

computer Graphics Based on FPGA(English),”

(AREJ), vol. 20, no. 5, pp. 1–15, Oct. 2012, doi:

10.33899/rengj.2012.61024.

 294 Marwan Abdulkhaleq Al-yoonus: FPGA-SoC Based Object Tracking …...

Al-Rafidain Engineering Journal (AREJ) Vol. 28, No. 2, September 2023, pp. 284-295

[15] S. Sajjanar, S. K. Mankani, P. R. Dongrekar, N. S.

Kumar, Mohana, and H. V. Ravish Aradhya,

“Implementation of real time moving object

detection and tracking on FPGA for video

surveillance applications,” in 2016 IEEE

Distributed Computing, VLSI, Electrical Circuits

and Robotics (DISCOVER), Mangalore: IEEE,

Aug. 2016, pp. 289–295. doi:

10.1109/DISCOVER.2016.7806248.

[16] Dr. S. A. Dawwd and U. T. Salim, “Systolic Video

Stream Object Detector Using FPGA-E,” (AREJ),

vol. 22, no. 4, pp. 33–43, Sep. 2014, doi:

10.33899/rengj.2014.89977.

[17] A. Arif et al., “Performance and energy-efficient

implementation of a smart city application on

FPGAs,” J Real-Time Image Proc, vol. 17, no. 3,

pp. 729–743, Jun. 2020, doi: 10.1007/s11554-018-

0792-x.

[18] N. A. Mandellos, I. Keramitsoglou, and C. T.

Kiranoudis, “A background subtraction algorithm

for detecting and tracking vehicles,” Expert

Systems with Applications, vol. 38, no. 3, pp.

1619–1631, Mar. 2011, doi:

10.1016/j.eswa.2010.07.083.

[19] R. Rodriguez-Gomez, E. J. Fernandez-Sanchez, J.

Diaz, and E. Ros, “FPGA Implementation for Real-

Time Background Subtraction Based on Horprasert

Model,” Sensors, vol. 12, no. 1, pp. 585–611, Jan.

2012, doi: 10.3390/s120100585.

[20] D. B. K. Trieu and T. Maruyama, “Real-time color

image segmentation based on mean shift algorithm

using an FPGA,” J Real-Time Image Proc, vol. 10,

no. 2, pp. 345–356, Jun. 2015, doi:

10.1007/s11554-012-0319-9.

[21] U. Ali and M. B. Malik, “Hardware/software co-

design of a real-time kernel based tracking system,”

Journal of Systems Architecture, vol. 56, no. 8, pp.

317–326, Aug. 2010, doi:

10.1016/j.sysarc.2010.04.008.

[22] M. Genovese and E. Napoli, “FPGA-based

architecture for real time segmentation and

denoising of HD video,” J Real-Time Image Proc,

vol. 8, no. 4, pp. 389–401, Dec. 2013, doi:

10.1007/s11554-011-0238-1.

[23] C. Stauffer and W. E. L. Grimson, “Adaptive

background mixture models for real-time tracking,”

in Proceedings. 1999 IEEE Computer Society

Conference on Computer Vision and Pattern

Recognition (Cat. No PR00149), Fort Collins, CO,

USA: IEEE Comput. Soc, 1999, pp. 246–252. doi:

10.1109/CVPR.1999.784637.

[24] Artur Zawadzki and Marek Gorgon, “Automatically

controlled pan–tilt smart camera with FPGA based

image analysis system dedicated to real-time

tracking of a moving object,” Journal of Systems

Architecture, 2015.

[25] HARRIS, C and STEPHENS, “A combined corner

and edge detector,” presented at the Vision

Conference, 1988, pp. 147–151.

[26] I. Bravo, M. Mazo, J. L. Lázaro, A. Gardel, P.

Jiménez, and D. Pizarro, “An Intelligent

Architecture Based on Field Programmable Gate

Arrays Designed to Detect Moving Objects by

Using Principal Component Analysis,” Sensors,

vol. 10, no. 10, pp. 9232–9251, Oct. 2010, doi:

10.3390/s101009232.

[27] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J.

Cong, “Optimizing FPGA-based Accelerator

Design for Deep Convolutional Neural Networks,”

in Proceedings of the 2015 ACM/SIGDA

International Symposium on Field-Programmable

Gate Arrays, Monterey California USA: ACM,

Feb. 2015, pp. 161–170. doi:

10.1145/2684746.2689060.

[28] L. Bai, Y. Zhao, and X. Huang, “A CNN

Accelerator on FPGA Using Depthwise Separable

Convolution,” IEEE Trans. Circuits Syst. II, vol.

65, no. 10, pp. 1415–1419, Oct. 2018, doi:

10.1109/TCSII.2018.2865896.

[29] Z. Wei, D.-J. Lee, and B. E. Nelson, “FPGA-based

Real-time Optical Flow Algorithm Design and

Implementation,” JMM, vol. 2, no. 5, pp. 38–45,

Sep. 2007, doi: 10.4304/jmm.2.5.38-45.

[30] Horn, B.K. and Schunck, “Determining optical

flow,” 1981, pp. 185–203.

[31] F. Barranco, M. Tomasi, J. Diaz, M. Vanegas, and

E. Ros, “Parallel Architecture for Hierarchical

Optical Flow Estimation Based on FPGA,” IEEE

Trans. VLSI Syst., vol. 20, no. 6, pp. 1058–1067,

Jun. 2012, doi: 10.1109/TVLSI.2011.2145423.

[32] I. Ishii, T. Taniguchi, K. Yamamoto, and T. Takaki,

“High-Frame-Rate Optical Flow System,” IEEE

Trans. Circuits Syst. Video Technol., vol. 22, no. 1,

pp. 105–112, Jan. 2012, doi:

10.1109/TCSVT.2011.2158340.

[33] H.-S. Seong, C. E. Rhee, and H.-J. Lee, “A Novel

Hardware Architecture of the Lucas–Kanade

Optical Flow for Reduced Frame Memory Access,”

IEEE Trans. Circuits Syst. Video Technol., vol. 26,

no. 6, pp. 1187–1199, Jun. 2016, doi:

10.1109/TCSVT.2015.2437077.

[34] C. Wang, E. D. Burnham-Fay, and J. D. Ellis,

“Real-time FPGA-based Kalman filter for constant

and non-constant velocity periodic error

correction,” Precision Engineering, vol. 48, pp.

133–143, Apr. 2017, doi:

10.1016/j.precisioneng.2016.11.013.

[35] P. Babu and E. Parthasarathy, “FPGA

implementation of multi-dimensional Kalman filter

for object tracking and motion detection,”

Engineering Science and Technology, an

International Journal, vol. 33, p. 101084, Sep. 2022,

doi: 10.1016/j.jestch.2021.101084.

[36] M. Genovese, E. Napoli, D. De Caro, N. Petra, and

A. G. M. Strollo, “FPGA Implementation of

Gaussian Mixture Model Algorithm for 47 fps

Segmentation of 1080p Video,” Journal of

Electrical and Computer Engineering, vol. 2013,

pp. 1–8, 2013, doi: 10.1155/2013/129589.

[37] G. K. Gultekin and A. Saranli, “An FPGA based

high performance optical flow hardware design for

computer vision applications,” Microprocessors

and Microsystems, vol. 37, no. 3, pp. 270–286,

May 2013, doi: 10.1016/j.micpro.2013.01.001.

[38] S. Guo et al., “A system on chip-based real-time

tracking system for amphibious spherical robots,”

International Journal of Advanced Robotic

Marwan Abdulkhaleq Al-yoonus: FPGA-SoC Based Object Tracking …... 295

Al-Rafidain Engineering Journal (AREJ) Vol. 28, No. 2, September 2023, pp. 284-295

Systems, vol. 14, no. 4, p. 172988141771655, Jul.

2017, doi: 10.1177/1729881417716559.

[39] J. G. Pandey, “An embedded FPGA-SoC

framework and its usage in moving object tracking

application,” Des Autom Embed Syst, vol. 25, no.

3, pp. 213–236, Sep. 2021, doi: 10.1007/s10617-

021-09252-y.

[40] M. Genovese, E. Napoli, D. De Caro, N. Petra, and

A. G. M. Strollo, “FPGA Implementation of

Gaussian Mixture Model Algorithm for 47 fps

Segmentation of 1080p Video,” Journal of

Electrical and Computer Engineering, vol. 2013,

pp. 1–8, 2013, doi: 10.1155/2013/129589.

 الخوارزميات القائمة على الدوائر القابلة للبرمجة والمطمورة لتتبع الاشياء:

مراجعة بحثية

 ** سعد أحمد القزاز * مروان عبدالخالق ذنون
marwanathy1972@umosul.edu.iq kazzazs60@umosul.edu.iq

 العراق ،الموصل ،جامعة الموصل ،كلية الهندسة ،* قسم الهندسة الكهربائية

 العراق ،الموصل ،جامعة الموصل ،كلية الهندسة ،** قسم هندسة الميكاترونكس

 2023ابريل 27 تاريخ القبول: 2023ابريل 20 استلم بصيغته المنقحة: 2023مارس 13 تاريخ الاستلام:

 الملخص

 Translation is too long to be saved
جاميع أصبحت أنظمة الكشف عن الأشياء وتتبعها ذات أهمية متزايدة في التطبيقات العملية في الوقت الحاضر, أدى ذلك إلى اهتمام العديد من الم

طوير وتنفيذ الرؤية البحثية من أجل تطوير وتحسين أداء مثل هذه الأنظمة ، حيث تم تطوير واقتراح العديد من الأساليب المتنوعة في هذا المجال. إن عملية ت

من وتطويره اقتراحه ماتم تقديم هو الدراسة هذه من الهدف إن المدمجة. والأنظمة للبرمجة القابلة الأنظمة باستخدام مستمرة السابقة الحاسوبية الأبحاث

تتضمن الدراسة وصفًا موجزًا للعديد FPGA-SoCو FPGA والحديثة في مجال أنظمة الكشف والتتبع باستخدام رؤية الحاسوب التي تستخدم منصات

أو الأقل استخداما من الخوارزميات الشائعة وخصائصها الأساسية والمجال الذي يفضل استخدامها فيه. كما تم تقديم مقارنة في استخدام الموارد وأيها الأكثر

الـ دوائر أن الدراسة المذكور. حيث وجدت المجال في المختلفة الخوارزميات أغلب ((LUTلـوا flip-flops (FF)لتنفيذ تنفيذ في الاستخدام هي شائعة

أن في حين المعالجة ((Multipliersوالمضاعفات DSPو BRAMالخوارزميات، أنظمة إنتاج في الهائل التطور نتيجة استخدام. نسبة أقل لها كانت

في أنظمة المراقبة المرئية. والسبب وراء ذلك هو قدرتها FPGA-SoCالرقمية المتقدمة ،أصبح واضحا بأن هناك زيادة في التركيز على استخدام منصات

 . FPGAعلى تنفيذ المعالجة المعقدة باستخدام التصميم المشترك البرمجي والمادي للحصول على أداء عالٍ في وقت أقل مقارنة مع استخدام الـ

 الكلمات الداله :

 حقليا القابلة للبرمجة موارد البوابات ;خوارزمية التتبع ;معدل نقل البيانات ;خوارزمية الكشف ;طرح خلفية الصورة

mailto:marwanathy1972@umosul.edu.iq
mailto:%20kazzazs60@

