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ABSTRACT

In all fault detection techniques, fault signal feature extraction is crucial and challenging. Convolutional
neural network and continuous wavelet transform (CNN)-the based technique of SLGF detection in distribution power
system protected by Petersen coil proposed in this paper. By using the CWT on the zero-sequence current signals of the
faulty feeder and healthy feeders, time-frequency RGB scale images acquired. A few RGB scale pictures under different
types of faults circumstances, which will extract characteristics of RGB scale image adaptively, trained that which is
CNN. A trained CNN could extract features and detect faulty feeder simultaneously. The distribution power system
protected by Petersen coil simulated in MATLAB simulated and record the Zero Sequence Current ZSC and analyzed it
by Orange big mining tool. The efficacy and the performance the suggested method for detecting faulty feeders are
compared and confirmed under various faults scenarios, two methods for identifying faulty feeders on conventional
machine learning and artificial feature extraction for comparison, concluded that The CNN best to detected the fault in
different condition, for Test land Test 2 were classification accuracy 100%, and Test 3 was 99.5%, and Test 4 was
70.9%.
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1. INTRODUCTION
When a single-line-to-ground fault

implement detected for faulty feeders. In [4]
proposed an SFGF protection method without

(SLGF) happened in a distribution system that
used resonant grounding protected by Petersen
coil, given that the fault current is modest and the
line-to-line voltage is still symmetrical, the
distribution system is permitted to continue
functioning for a 1 ~ 2 hours in accordance with
technical standards [1].

Recently, several protective methods and schemes
proposals for SLGF exist [2], which are
categorized into three groups: steady state signals
protection methods, schemes for transient state
protection, Signal-based protection system,
information fusion, and three technology-based
protection. The combination of numerous
techniques has become possible with the
advancement of information fusion technology. In
[3] suggested using genetic neural networks to

setting a threshold.

Techniques based on the wavelet
transform and the Bayesian  selection
methodology is suggested for identifying the
faulty feeder [5].

Small current grounding systems use the
artificial neural network (ANN) approach to
choosing fault lines. The classification results are
generated by execution of the ANN model to
discover the Testing of incorrect data and the
classification rules between the input and target
data [6].

2. THE THEORETICAL BASES
When a single fault to ground happened,
transient current in the zero sequence waveform
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characterized between fault feeder and health
feeders, the transient ground current

ig Comprised of transient inductive
current i_ and transient capacitance current ic by
the equation(1)

ig =iy +ic=Uem— Im) cos(wt + @) +
Imeoqueié + I, (% singsinwst —
coszpsinwft) eié (@Y)

where ILm nd Icm Capacitive current,
power frequency is o, initial phase angle of phase
voltage at fault time is ¢, angular frequency of
free oscillation component is ws where oscillation
frequency defined as number of cycles/oscillation
per second , 1., tc is the time constant of
inductance and capacitance loops [7].
2.1 Continuous Wavelet Transform

Wavelet transformers considered a time-
frequency analysis method, which is classified as
discrete wavelet transform DWT and continuous
wavelet transform CWT [8]; The signal is split
into many parts for many different frequency
components in mother wavelet transform, where
it can scale high-frequency resolution and low
time resolution in the low frequencies and high
time resolution and low-frequency resolution in
the high frequency [9].

The Fourier transform y(w) that satisfied
the condition:

[ (w)|?

Cll’:fR lw]

And wy(t) is defined as the mother
wavelet function where wavelet defined as a wave
with limited duration with average value of zero
and nonzero norm, and the continuous wavelet
function given by

L (DY b eraro 3
lpa,b(t)_\/_a ( a )a, ER,aF ()

Where a is the scale and b is the
translation parameter.

For signal x(t) is defined as equation (4)
continuous wavelet transform

1 (® /t—»b
cwrx(a,b)_ﬁf_ww( _ )dt 4)

Used Analytic Morlet that has equal
variance time and frequency

The Fourier transform of the Morlet
wavelet is given by

U(f) = n/42 e~ W/D@nf-2mfo)* (5

dw <o (2)

Which is a Gaussian function with a displacement
along the frequency axis of fo. That is typically
the characteristic frequency of the analytical
Morlet wavelet rather than the pass band
frequency is chosen to be the center frequency of
the Gaussian spectrum, which we previously used
for the wavelet on the Mexican hat [10].

2.2 Convolution Neural Network
The C layer's convolution operation is
defined

xi=f Z xVKL+ B (6)
iEMj

| is the number of layers, The kernel K, b is
biased, and x_j”l is the output of layer |
x_j™(I-1) is input layer I; for activation function f,
Mj is the input feature set.
To prevent over-fitting, we used S (sub-sampling
layer) S as an equation
Is

xt=f (a}.maxiEMj(xil'l) + b}),

1
xl=f a}.ﬁz bt ()
lEMj

Where a, b are bias and k, t are dimensional of the
pooling matrix. First, the output features pictures
from the preceding layer are extended into the
column vectors one by one, then stacked to create
a single column eigenvector for CNN full-
connection layer.

The eigenvector is mapped equation [11],[12].

Vi = f(wgx + by) 38

In Fig.1 showed CNN structure

A Typical Convolutional Neural Network (CNN)

Kernel

Input Image.

Feature Maps : Fully connected layer

Feature Extraction Classification Probabilistic

Fig.1 CNN Structure

2.3 Feature Extraction
For feature extraction approach in
machine and deep learning engineering, the
correlation coefficient to similarity distinguish of
images to correlation tow points p and q with k
dimensions is calculation
correlation(py, qi)

_ . cov(py, qx)
B ;std(pk)-std (qx) ®
Where
1 n
cov(py, qi) = ;Z(pk —p7).(qk
k=1
-q7) (10)

1 n
std(P) == Ge=p7) (D
Where =
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1 n
= ) (12)
k=1

Where cov is a covariance of variables, Std is a
standard deviation, and calculated Euclidean
distance to distinguish the difference of amplitude
two images.

Euclidean(py, qx)

i(pk = qi)?
k=1

For feature extraction the images content color,
texture, shape, position, and dominate edges of
images items and regions [13], [14], [15]. For find
similarity of two images by taken points for pixels
at images to distinguish by correlation coefficient
of points p and g with k dimensions, and to
calculate distance by Euclidean distance to
describes the difference of points at images
[16],[17].

(13)

2.4 SVM (Support Vector Machine)

Support vector machines (SVMs) are a
collection of supervised learning methods used
for regression and classification tasks. Its primary
goal is to achieve high predictive accuracy while
preventing overfitting to the data. This is
accomplished by utilizing machine-learning
theory, which involves employing a linear
function in a feature space with multiple
dimensions. The SVM s trained using an
optimization process. Theory based learning
algorithm that incorporates a learning bias [18].
2.5 Adaboost

The Boosting technique known as the
AdaBoost algorithm, also known as Adaptive
Boosting, is used as an Ensemble Method in
machine learning. For supervised learning,
boosting is used to lower bias and variance. The
weights are redistributed to each instance, with
higher weights being given to instances that were
incorrectly classified, hence the name "adaptive
boosting [19].

2.6 Faulty Feeders Detection Based on SVM
and Adaboost

classification outcomes may differ when
the same features are mixed with several
classifiers. SVM and Adaboost classifiers are
frequently employed in different classification or
recognition tasks. Adaboost has excellent high
classification accuracy and flexibility. Structural
risk minimization and statistical learning theory
are the foundations of the machine learning
technique known as SVM, which has a distinct
benefit in tackling problems with few samples,

nonlinear behavior, or high dimensions. It is
appropriate  for both defective and accurate
recognition [20].

3. THE PROPOSED METHODOLOGY

The proposed methodology is to take the
signals of the zero-sequence currents for faulty
feeder and healthy feeders, convert them by
continuous wavelet transform into scalogram form,
collect the images, and discover the features
extraction by the convolutional neural network
technique, then identify the faulty feeder as
explained in Flowchart in Fig.2 .

TRAIN

DATA

DATA

Fig.2 Flowchart of Detection Method SLGF

The distribution power system protected
by the Petersen coil model in Fig.3 is simulated
by Matlab simulation to generate and record ZSC
for faulty feeders and healthy feeders for
collected samples for training and Testing in
CNN.

Table 1: Parameters of Power System

Three Phase Source 33Kv, 50 Hz

Transformer (A-Y) 25MVA | 33/11kV,
50 Hz

Length of Feederl 15 km

(Over-Head)

Length of Feeder 2 10 km

(Cable)

Length of Feeder 3 5km

(Cable)

Load at Feeder 1 6 MVA

Load at Feeder 2 4.5 MVA

Load at Feeder 3 3 MVA

Petersen Coil Inductance | 0.6802 H

at full compensated

In Table 1, show the parameters of
distribution power system earthed by Petersen
Coil.

Table 2: Parameters of Lines

No. of Resistance Inductance Capacitance
Feeder (Q/km) (mH/km) (F/km)
Feeder 1 | 0.13728 1.998 9.39654e-9
Feeder 2 | 0.5125 1.24 0.3216e-6
Feeder 3 | 0.5125 1.24 0.3216e-6

In Table 2, show the parameters of lines.
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Fig.3 Model Power System protected by Petersen
Coil

4. RESULTS AND DISCUSSIONS

This paper is proposed a model for a
distribution power system that protected by
Petersen coil. Four Tests have been done to detect
single line to ground fault, and detected faulty
feeder. The samples have been taken by making a
fault by steps (1% from feeder length each step).
Then, the Samples is recorded zero sequences
current ZSC from time when initial fault
happened during the first second of the fault, for
each feeder to maked the samples, then taken the
continuous wavelet transform by analytic Morlet
(Gabor) type to obtained the Scalogram as
samples, and collect the images to classified by
convolution neural network, to normalized the
signals, that trained by SqueenzeNet [21].
Adaboost and support vector machine SVM for
comparison results, analytic the result by Orange
Big Mining OBM and obtain confusion matrix,

Confusion matrix is analyzed the results
parametersof confusion matrix is showed in Table
4. Where TP: True Positive, FP: False Positive,
FN: False Negative,

TN: True Negative

Actual Value

Positive
(Class A)

Negative
(Class B)

False
Positives

(FP)

Positive
(Class A)

False
Negatives
(FN)

MNegative
(Class B)

Predicted Value

Fig.4 Confusion matrix

Table 3: Parameters of Confusion Matrix

Metric Name Formula from Confusion Matrix

Accuracy (TP+TN)/(TP+TN+FP+FN)
(Classification
Accuracy) (CA)

Precision TP/(TP+FP)

Recall, TP/(TP+FN)

Sensitivity

Specificity TN/(TN+FP)

F1-Score (2*precision*recall)/(precision+re
call)

Where true positive (TP), a Test result
that correctly indicates the presence of
characteristic. True negative (TN), a Test result
that correctly indicates the absence of
characteristic. False positive (FP), a Test result
which wrongly indicates that a particular attribute
is present. False negative (FN), a Test result
which wrongly indicates that a particular attribute
is absent, AUC is Area Under ROC Curve, ROC
is (receiver operating characteristic curve) is a
graph showing the performance of a classification
model at all classification thresholds [22].

The parameters of CNN are cross-
validation 5 fold,100 hidden layers, RelLu
activation, ADAM solver, Regulations a = 0.001,
the maximum number of iterations is 200, and
parameters of Adaboost, the number of estimation
is 50, the learning rate is 1.0000. And the
parameters of SVM, the cost is 1, regression loss
epsilon is 0.1, the kernel is RBF, numerical
tolerance is 0.001, and the iteration limit is 100.

In the first Test to discriminate and
detect the different faulty feeders in the model,
the Petersen coil compensated degree was 100%,
and fault resistance (Rf) was 1 ohm with 100
images of positive and 200 images of negative.
After training, each method classified the faulty
feeder into different feeders.

In the second Test, the Petersen coil
compensated degree for detecting by changing
resistance faults in feeder 1 was 100%. The fault
resistance values was 1,100 and 1000 ohms. The
Test included 100 positive images and 200
negative images. After training, each method
detected the faulty feeder.

In the third Test to discriminate and
detect the compensated degree of Petersen coil of
faulty feeder in feederl with resistance fault 1
ohm was the degree 90%,100%, and 110%, with
100 images of positive and 200 negative.

In the fourth Test to discriminate and detect the
healthy feeders and faulty feeders, in feeder 1
with  100% compensated degree and fault
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resistance 1 ohm, With 100 images of positive
and 200 negative.

Table 4: Scores of Test 1

Scores

Model AUC CA F1 Precision Recall

SVM 1.0 10 1.0 1.0 1.0
CNN 1.0 10 1.0 1.0 1.0
AdaBoost 1.0 10 1.0 1.0 1.0

The Table 4 explained the Classification
Accuracy CA of all classification algorithm
detected the fault with 100% accuracy, because
the high variance between images features for
Test 1.

Confusion matrix for CNN (showing proportion of predicted)

Prediced
SLGF_100_1_10HM SLGF 100_2 10HM SLGF_100_3 10HM
Actual  SLGF_100_1_10HM 1000% 00% 00%
SLGF_100_2_10HM 00% 1000% 00%
SLGF_100_3 10HM 00% 10% 100.0%

Fig.5 Confusion Matrix for CNN of Testl

In Fig. 5 explained in Confusion matrix for CNN
that the single line to ground fault at 100%
Petersen coil compensated at fault resistance 1
Ohm for each feeder-detected accuracy 100%.

Confusion matrix for SVM (showing proportion of predicted)

Predicted
SLGF_100_1_10HM SLGF 100_2 10HM SLGF 100 3 10HM
Actual SLGF_100_1_10HM 1000 % 00% 00%
SLGF_100_2_10HM 00% 1000% 00%
SLGF_100_3_10HM 00% 00% 100.0%

Fig.6 Confusion Matrix for SVM of Test 1

In Fig. 6 explained in Confusion matrix for SVM
that the single line to ground fault at 100%
Peteresn coil compensated at fault resistance 1
Ohm for each feeder-detected accuracy 100%.

Confusion matrix for AdaBoost (showing proportion of predicted)

Predicted
SLGF_100_1_10HM SLGF_100_2 10HM SLGF_100_3 10HM
Actual  SLGF_100_1_10HM 1000 % 00% 00%
SLGF_100_2_10HM 0.0% 1000 % 00%
SLGF_100_3 10HM 0.0% 00% 1000 %

Fig.7 Confusion Matrix for Adaboost of Test 1

In Fig. 7 explained in Confusion matrix for
Adaboost that the single line to ground fault at
100% Petersen coil compensated at fault
resistance 1 Ohm for each feeder-detected
accuracy 100%.

Table 5: Scores of Test 2

Scores

Model AUC CA F1 Precision Recall

SVM 1.0 10 1.0 1.0 1.0
CNN 1.0 10 1.0 1.0 1.0
AdaBoost 1.0 1.0 1.0 1.0 1.0

The Table 5 explained the CA of all classification
algorithm detected the fault with 100% accuracy,
because the high variance between images
features for Test 2.

Confusion matrix for CNN (showing proportion of predicted)

Predicted
SLGF 100_1 10000HM  SLGF 100_1_1000HM ~SLG 100.1_10HM
Actal - SLGF_100.1_10000KN 1000% 00% 0%
SLGF.100.1_f000HM 0% 0%
SLGF 100_1 10KM 00% 00% 1000%

Fig.8 Confusion Matrix for CNN of Test 2

In Fig. 8 explained in Confusion matrix for CNN
that the single line to ground fault at 100%
Petersen coil compensated at fault resistance 1,
100, 1000 Ohm for each feeder-detected accuracy
100% for Test 2.

Confusion matrix for SVM (showing proportion of predicted)

Predicted
SLGF_100_1_10000HM  SLGF 1001 1000HM ~SLGF 1001 10HM
Actual - SLGF_100_1_10000HM 1000% 00% 00%
SLGF 100_1_1000HH 00% 1000% 00%
SLGF 100_1_10HM 00% 00%

Fig.9 Confusion Matrix for SVM of Test 2

In Fig. 9 explained in Confusion matrix for SVM
that the single line to ground fault at 100%
Petersen coil compensated at fault resistance 1,
100, 1000 Ohm for each feeder-detected accuracy
100% for Test2.

Confusion matrix for AdaBoost (showing proportion of predicted)

Predicted
SLGF_100_1_10000HM SLGF_100_1_1000HM SLGF_100_1_10HM

Actual  SLGF 100 1_10000HM 1000 % 00% 00%
SLGF_100_1_1000HM 00% 100.0% 00%
SLGF_100_1_10HM 00% 00% 100.0 %

Fig.10 Confusion Matrix for Adaboost of Test 2

In Fig.10 explained in Confusion matrix for
Adaboost that SLGF fault at 100% Petersen coil
compensated at fault resistance 1, 100, 2000 Ohm
for each feeder-detected accuracy 100% for
Test2.
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Table 6: Scores of Test 3

Scores

Wodel ~ AUC A i} Precision Recal

SW 0S99G31972r881156 0 950476190471905 0 9905900124704 SOUTATAUTADTADT D S904TE1S04TE1S05
ChN 10 0995230095300983 0 S9B237522713743 0.9983051643192488 0 9957380982360%53

AdaBoost [ S6O8TEMUS 0 BIRIBINBL 1 BLIOMBI56 0 SIUIRBEANTY ( SEL300E1I009523

The Table 6 explained CA for CNN is 0.995,
SVM is 0.995 and Adaboost is 0.952, therefor
CNN is best to detected fault for Test3.

Confusion matrix for CNN (showing proportion of predicted)

Predicted
SLGF_100%_F1_10HM  SLGF_110%_F1_10HM SLGF_90%_F1_10HM
Actual  SLGF_100%_F1_10HM 1000% 00% 00%
SLGF_110%_F1_10HM 00% 96 % 00%
SLGF_90%_F1_10HM 00% 14% 100.0%

Fig.11 Confusion Matrix for CNN of Test 3

In Fig.11 explained Confusion Matrix for CNN
with SLGF at 90%, 100%, and 110% of Petersen
Coil Compensated at Resistance fault 1 Ohm. In
110% explained is 98.6% for Test3.

Confusion matrix for SVM {showing proportion of predicted)

Predicted
SLGF_100%_F1_10HM SLGF_110%_F1_10HM SLGF_90%_F1_10HM

Actual  SLGF_100%_F1_10HM 100.0 % 00% 14%
SLGF_110%_F1_10HM 00% 100.0 % 14%
SLGF_90%_F1_10HM 00% 00% 972%

Fig.12 Confusion Matrix for SVM of Test 3

In Fig.12 explained Confusion Matrix for SVM
with SLGF at 90%, 100%, and 110% of Petersen
Coil Compensated at Resistance fault 1 Ohm. In
90% explained 97.6% for Test 3.

Confusion matrix for AdaBoost (showing proportion of predicted)

Predicted
SLGF_100%_F1_10HM SLGF_110%_F1_10HM SLGF_90%_F1_10HM
Actual - SLGF_100%_F1_10HM 971% 00% 29%
SLGF_110%_F1_10HM 00% 944% 29%
SLGF_90%_F1_10HM 29% 56% 941%

Fig.13 Confusion Matrix for Adaboost of Test 4

In Fig.13 explained Confusion Matrix for
Adaboost with SLGF at 90%, 100%, and 110% of
Petersen Coil Compensated at Resistance fault 1
Ohm. In 110% is 94.4%, and in 90% is 94.4% for
Test 3.

Table 7: Scores of Test 4

Scores

Nodel  AUC (A i Precision Recall

SV OST2SeRMt360AT (SOSSZB0GI5R0%6 QSORG3ITTINAONMS D6ITTMeeddiis (SIET3BIAIRIG
NN 0B4B07Sec1E36735 (T0S805050086 QTOSHa2enecnstta QTOGTAROGTAoass (TOORZBIGAraeioe
AdeBonst (TOTIAQ8ATIANED O OATEIONTISONT 0BOSSOTENS015  (.6O%GR38TE02E 1 GATEIATEIST

The Table 7 explained CA for CNN is 0.709,
SVM is 0.609 and Adaboost is 0.604, therefor
CNN is best to detected fault for Test 4.

Cantusizn marfor CN fshowing proportion ofpredicte)
Freced
SLGF 1% F{_AOKM AULTYFEEDER  SLGF 1i0% F2 OKM SOUNDFEEDER SLGF HiP F3 1M SOUDFEEDER
Al SLEF 100% FY_108M FAULTYFEEDER ek 4] (1]
SLGF 1 72 OKM SOUNDFEEDER [} i) U

SLG 1 F JOKM SOUNDFEEDER (] a1k s

Fig.14 Confusion Matrix for CNN of Test 4

In Fig.14 explained Confusion Matrix for CNN
with SLGF at 100% of Petersen Coil
Compensated at Resistance fault 1 Ohm. The
Faulty feeder is 100%, but 56.9% for healthy
feeder 2, and 56% foe healthy feeder 3 for Test 4.

Confusin i o SYMfhowing rapoton o prdicte)

P
SUGE 0% 1 06 FALTFERIER SL6F 0%, 2 0K SONFEELER 168 08 P 00 SONOFEEDR
Al S 0% F 108 FANTVEEIER s % s
SLG 10 EORN SOUNFEETER 1 i i
LG A0 2 ORN SOONYEEIER s i3 T

Fig.15 Confusion Matrix for SVM of Test 4

In Fig.15 explained Confusion Matrix for SVM
with SLGF at 100% of Petersen Coil
Compensated at Resistance fault 1 Ohm. The
Faulty feeder is 100%, but 39.7 % for healthy
feeder 2, and 42.7% foe healthy feeder 3 for Test

P
SLGF 0% FY08M FATFEEDER SLGF 1% FLOAM SUADFEEDER SLGF 0% F) O SOUNVEELER

L SGF 00k F A0 FATFERDR 1oy n s
SI6 10 F 01 SOUNFEEDER y w7y il
S 10, 3 01 SOURGEEDER (1] ai s

Fig.16 Confusion Matrix for Adaboost of Test 4

In Fig.16 explained Confusion Matrix for SVM
with SLGF at 100% of Petersen Coil
Compensated at Resistance fault 1 Ohm. The
Faulty feeder is 100%, but 39.7 % for healthy
feeder 2, and 43% foe healthy feeder 3 for Test 4.

In Fig.17 showed the three-phase voltage and
current at bus connected with secondary side of
distribution transformer.

In Fig.18 showed the three-phase voltage and
current at bus connected with secondary side of
distribution transformer. When happened fault at
0.02 second.

In Fig.19, fig.20 and fig.21 showed zero sequence
current for faulty feeder 1 at resistance fault 1,100
and 1000 Ohm, respectively.
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In Fig.22 and Fig.23 showed Zero sequence
current for healthy feeder when fault happened in
feeder 1.

b
A

Fig.17 Three-phase voltage and current in Bus at
No fault

A
B

Fig. 18 Three-phase voltage and currents in Bus at
Fault in Feederl

Fig.19 ZSC of Faultyl‘:eeder 1lat Rf1 Ohm

‘‘‘‘‘‘

Flg 20 ZSC of Faulty Feeder 1 at Rf 100 Ohm

Fig.21 ZSC of Faulty Feeder 1 at Ry 1000 Ohm

Fig.22 Healthy Feede;‘é at Faulty Feeder 1 at Ry
1000 Ohm

Fig.23 Healthy Feeder 3 at Faulty Feeder lat Rt
1000 Ohm

Fig.24 RGB Scale images of Faulty Feederl of
ZSC signals at 1,100 and 10002
- -
Fig.25 RGB Scale images of Healthy Feeders at
fault in Feeder1 at fault resistance 1Q

5. CONCLUSION

The time-frequency RGB scale images
of SLGF signals in a distribution system protected
by Petersen coil are created in this study using
CWT. The CNN input is regarded as the RGB
scale image. Choosing the features and classifier
is resolved using a CNN-based fault detection
method. The benefit of using a trained CNN is
that it can reliably identify the faulty feeder.

The Tests results showed that the
suggested fault detection system is reliable and
robust despite a wide range of fault situations and
interfering factors. The suggested method
outperforms methods based on traditional
machine learning algorithms, like the Adaboost or
SVM, in terms of fault detection.
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