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ABSTRACT

In this work, linear and nonlinear designs of active suspension models are proposed to develop and improve
quarter-car systems. To simplify stability assessment, a second-order system is proposed for both linear and nonlinear
cases. The linear system consists of mass, spring, and damper components, while the nonlinear system includes the same
components with additional nonlinear parts for stiffness and damper. Moreover, the state space of the linear and nonlinear
is presented as apreparatory step before applying the analysis methods to validate the models. After that, the stability of
linear and nonlinear systems is characterized using Matlab simulations to compare suspension performance parameters
such as rise time (tr), settling time (ts), and peak overshoot (Mp). The simulation results of the linear system for each of tr,
ts, Mp were0.097612sec, 2.3 sec, and 0.3839 cm, respectively, while the results of the nonlinear system were 0.52237 sec,
20.16 sec, and 0.3064 cm, respectively. In addition, the results for linear and nonlinear systems indicate the need to improve
ride comfort and road handling using PID controller design. Consequently, it is possible to reach a better compromise
than is possible using pure elements, without a controller). Finally, the active suspension system for both linear and
nonlinear systems is improved through the application of a PID controller, resulting in the following values for the linear
system: tr = 0.10721sec, ts = 1.693 sec, and Mp = 0.3682cm. Similarly, the nonlinear system showed improved
performance with tr = 0.259775sec, ts = 1.325 sec, and Mp = 0.0734cm.
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1. INTRODUCTION

For many years, ride comfort and car safety, the
suspension system have been important subject to
study. The purpose of the suspension system is to
design and support the weight of the driver,
passengers and the car's structure. In addition to the
damping vibrations that reach the body of the car,
handling stability, performance, and comfort of an
automobile's suspension system can all be enhanced
with  thoughtful ~design. Currently, passive
suspension is the most used type, where once the

suspension parameters have been chosen, they
cannot be changed [1]. The concept of active vehicle
engineering gained significant interest in the the
1960s, particularly in the research of active and
semi-active suspension systemssince. A
fundamental approach based on the linear model and
traditional PID system was adopted to investigate the
dynamic suspension system, along with optimal
linear quadratic control [2]. In contrast, passive
suspension systems consisted of fixed and
unchangeable components, leading to the drawback
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of transmiting excessive road vibrations to
passengers. To maximize ride comfort, the passive
elements such as dampers and springs had to be
carefully chosen for a softer portion of the vehicle
while compromising comfort in rougher sections.
Additionally, suspension system specifications
needed to be adjusted to accommodate changing
road conditions. Consequently, several approaches
were developed, including partially active and fully
active suspension systems, to address these
challenges [3-5].

To analyse this, a quarter-car model representing
one-fourth of the vehicle suspension system was
developed for the sake of simplicity. This system
connected the wheel and the body, which is a crucial
component for transferring force and torque between
the two [6].

Vehicle suspensions are designed to
provide adequate road holding and isulate the
vehicle body from road irregularities, addressing the
challenge of offering comfort to occupants.
Handling analysis is also concerned with achieving
good road holding, which refers to car’s ability to
accelerate, brake, and turn safely [7-11]. In order to
reduce body acceleration and dynamic tire load
while still functioning within the limitations of the
suspension working space for a specific suspension
parameter set; the design had two goals. Traditional
passive suspension systems aim to balance handling
and riding. While a highly damped suspension offers
excellent handling, it can make passengers
uncomfortable. Conversely, a low damped
suspension compromises vehicle stability but
improves ride comfort. The effective control policy
of an active suspension system allows for a balance
between comfort and stability [12].

PID is the most popular control technique
in business, and it has been utilized to control many
systems, as mentioned in references [13] and [14].
Its ease of use and relative simplicity contribute to
its appeal, either intuitively or by utilsing one of the
various tuning techniques [15, 16]. It is also well-
liked because it effectively modifies controller
system parameters like overshoot, rise time, and
settling time [17]. It requires high loop gains,
however, and is not resilient to parameter fluctuation
[18, [19].

Recently, active suspension systems have
received significant attention from researchers
interested in enhancing the vehicle's stability and
ride handling capabilities. In the field of active
suspensions systems, various control techniques
have beenemployed, including the linear quadratic
regulator [20], adaptive sliding control [21], Hoo
control [22], sliding mode control [23], fuzzy logic
[24], preview control [25], optimal control [26:27],
and neural network methods [28]. These control
techniques have the potential to improve the
performance of active suspension systems.
However, they often require more complex
mechanisms or a unique performance determination
table, in addition to posing certain application
challenges.

This paper addresses the challenges associated
with bothlinear and nonlinear suspension systems,
which have exhibited inadequate performance and
stability according to previous studies. The primary
focus of this work is to identify and address the
specific the issues found in quarter active suspension
systems, while also proposingfuture methods aimed
at resolving these problems.

This paper aims to demonstrate how a PID inner
loop feedback control of the actuator force, when
combined with an input from a road disturbance, can
improve the stability of a nonlinear quarter-car
active suspension system.

2. PID Controller

The closed-loop control system serves as the
foundation for the operating principle of PID
controller, where PID stands for Proportional (P),
Integral (I), and Derivative (D). In proportional
control (P), the output signal is genertated by
multiplying the current error signal by the gain (Kp).
The integral term encompasses the sum of all
instantaneous values of the signal from the start of
counting until the end, represented by the integral
sign. By adding the to the proportional term, the
process moves faster toward the set point and
eliminates the residual steady-state error associated
with a proportional controller as shown in equ (1).

The derivative term (D) slows down the output
rate controller, and its impact is most noticeable
when the controller is close to its set-point. The PID
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controller employed in the active suspension system
is depicted in Figure 1 [29].
PID = Kpe(t) + K; [ e(t) dt + Kd%e(t) 1)

X=X

System

Figure 1. Block diagram of suspension system
using PID Controller.

3. Linear Active Suspension System

In this section, the linear model of the ¥ car active
suspension system is presented, as shown in
Figure 2. However, the linear model only consider
the linear components of the dynamical nonlinear
systems, thereby neglecting the nonlinearities in the
stiffness and damper of the tire. In this model, an
actuator generates the control force between the the
wheels’ mass and the vehicle body.

1

Figure 2. Model of quarter car active suspension
system.

The variables used in this model include: m; for the
spreng mass, my for the unsprung mass, , Fq for the
spring elastic force, Fs for the damping force, F, for
the the tire elastic force, F_t for the the tire damping
force, and u for the actuator control force. The
following equations represent the motion dynamics
of the car's body and wheels [31]:

mzxZ_F;_Fd'l'Ft‘l‘Fr_u:O (3)
Where F,, F;, E. and F; are:

Fg=ki(x; — x3)
Fy = (% — %3)
E o= ky(x; — xq)
Fp = cp(dp — %q) 4

where X; and xz arerepresent the displacements of the
sprung and unsprung mass, respectively, Xq
represents the excitation displacement of the road, k;
represents the linear stiffness coefficients of the
spring, ¢ represents the linear damping coefficients
of the suspension, while k and c, represent the
damping and stiffness coefficients of the tire,
respectively.

myxy + k(g — x3) + ¢, (X — %) +u=0 (5)

my¥y — ki (g — x2) — ¢ (% — %) — kp(xg — x2) —
(kg — %) —u=0 (6)

3.1. MATLAB Simulation for Linear
Suspension System

The simulation diagram of the open-loop system
illustrates the interconnection of the linear active
suspension systems, as shown in
Figure 3:

]
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Figure 3. MATLAB-Simulink of 1/4 vehicle of the
linear active suspension system.
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4. Nonlinear Active Suspension System

In this section, a nonlinear two degree of freedom
(2DOF) model is established for the design of a
quarter car, taking into account the nonlinearity of the
damping and elastic elements. The dynamic
equations for the active suspension system of the
quarter vehicle can be the same as equations(2) and
(3), with Fy4, F, F,. and F, as defined [20]:

Fg=ki(x1 — x2) + a1 (x1 — x3)3

Fy = ¢ (% — %) + ap (%1 — %,)3 @)
where a4, represents the nonlinear stiffness
coefficients, a, represents the nonlinear damping
coefficients of the suspension, while k, and c,
represent the damping and stiffness coefficients of
the tire, respectively. By substituting equations (7)
and (4) into equations (2) and (3), we obtain the
following [30]:

myEy + kO —x) + oy (g — 223 + ¢ (g — %) +
o, (% —%)3 +u=0 (8)

myXy — k(g — %) — a3 (g — )3 — ¢ (g — %) —
(X — %)% + ko (xp — xg) + ¢ (h —%g) —u =10

To simplify the model, the following parameter
nominalizationis made [20]:
X1+ (0 = x0) + (g — )% + § (g — %) + 8%y —
)2 +u=0 (10)

Xy —yCe = x2) —ypu(ry — %)% = ¥4y (% — %) —
Y8 (= %)% + vk (x — x4) +¥$(kp — %) —u =0
11)

2 L2 C
where p=%E =2 o -4
k1 \/E Jymakq
1
=—2_ k="3and y =" Here L is the unit
(Z - \/m' - k1 V= my’
length.

In the next section, the analysis of the linear and
nonlinear systems is presented in order to test their
stability and performance.

4.1. MATLAB Simulation for NonLinear
Suspension System

The open-loop nonlinear system has been
interconnected using MATLAB Simulink, as
depicted in Figure 4
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Figure 4. Matlab-Simulink diagram of the 1/4 vehicle with nonlinear active suspension.
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5. RESULTS AND DISCUSSIONS

The results of the open loop for both linear and
nonlinear systems display the responses and the
analysis of the 1/4 quarter car active suspension
systems. Table 1 presents the linear and nonlinear
parameters of these systems.

Table 1. Parameters for linear and nonlinear systems

Body Displacement (X1) cm

[30, 31].

Parameters | Values | Units
m, 320 kg
m, 40 kg
c1 1200 Ns/m
c, 4000 Ns/m
a 180 N/m3
a, 20 N3 /m;
kq 18000 N/m
k, 200000 | N/m

u 0.01 -
() 0.469 —
{1 0.5 —
& 1.667 -
k 11.111 -
14 8 -

a) Linear system results

Figure 5 (a &b) illustrates the displacements of the
body and wheel displacement respectively. The
body displacement represents the state number one
of the systems.

Time (sec)

Figure 5 (a). The states of the linear active
suspension system of Body displacement.

Wheel Displacement (X2) cm

Suspension Deflections(X1-X2) cm

5\ ~—

04
03
02p

04+

Time (sec)

Figure 5 (b). The states of the linear active
suspension system of wheel displacement.

Finally, the system output (X1 - X2) is presented
in Figure 6, highlightingthe necessity for enhancing
both performance and stability. This improvement
is accomplished throughthe utlization of a PID
controller.

0.3

without PID
with PID

ozl

uw

0.2

0.3

0.4

Time (sec)

Figure 6. Comparison of output response (X-
X2) in linear active suspension system with and
without PID control.

b) Nonlinear system results

Figure 7 (a&b) illustrates the displacements of
the body and wheel, respectively. The body
displacement corresponds to the first state of the
nonlinear systems.
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Figure 7 (a). Nonlinear active suspension
system states for body displacement.

I | | I

05 \/\_/AM————-

Wheel Disnlacement (X2) cm
o = =
~ Y =

o

Time (sec)

Figure 7 (b). Nonlinear active suspension system
states for wheel displacement.
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Figure 8. Output response (x; — x,) of Nonlinear
active suspension with and without PID control.

It can be argued that the mathematical models have
been developed for both linear and nonlinear of
active suspension systems. In addition, these
systems are interconnected using Matlab Simulink,

as depicted in Figures 3 and 4, in preparation the
next step. Subsequently, the systems are initialized
with 0.5 road disturbance [20, 21]. The simulation
results reveal that there is a need to enhance the
stability and performance of these systems, and to
address this, the implementation of a PID controller
is suggested. Table 2 provides an overview of the
characteristics of step input for both linear and
nonlinear open-loop systems, with and without PID
controller, including rise time, settling time, and
maximum peak overshoot.

Table 2 systems charachteristics for step input.

System RiseTime SettlingTime Mp
(sec) (sec) (cm)
Linear without 0.097612 2.3 0.3839
controller
Linear with PID 0.10721 1.693 0.3682
controller
Nonlinear 0.52237 20.16 0.3064
without
controller
Nonlinear with 0.259775 1.325 0.0734
PID controller

6. Conclusion

The linear and nonlinear active suspension systems
have been presented to address their respective
issues. Firstly, the system model was designed and
developed using linear and nonlinear concepts.
Next, the systems were analyzed and tested to
evaluate their stability. In the case of the system
without a controller, the simulation results for the
linear system were as follows: tr = 0.097612 sec, ts
= 2.3 sec, Mp = 0.3839 cm. For the nonlinear
system, the results were: tr = 0.52237 sec, ts = 20.16
sec, Mp = 0.3064 cm. Both the linear and nonlinear
system responses indicated poor stability and
performance. Finally, the active suspension system
for both the linear and nonlinear systems was
improved by implementing a PID controller. As a
result, the performance of the linear system
improved to tr = 0.10721 sec, ts = 1.693 sec, Mp =
0.3682 cm. Similarly, the nonlinear system showed
improved performance with tr = 0.259775 sec, ts =
1.325 sec, Mp =0.0734 cm.
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