
Ali : Fpga Based Implementation Of Concatenation Matrix

15

Fpga Based Implementation Of Concatenation Matrix

Fakhraldeen H. Ali Amar I. Dawod

Dept. Of Computer Engineering - University of Mosul
Email: fhali310@yahoo.com

Abstract

The computer graphics system performance is increasing faster than any other computing
application. The Geometric transformations and animation are one of the most important
principle of the interactive computer graphics which are essential for modeling and viewing. This
paper tends to construct a general form of matrix representation of the geometric transformations
and implement it using Field Programmable Gate Array (FPGA). In addition to that the sine and
cosine function evaluation is done using two techniques, the lookup table method and CORDIC
algorithm.

Keywords: lookup table, FPGA, geometric transformations, CORDIC.

 /

 .

 .
 .

Received 17 Oct. 2008 Accepted 21 June 2009

mailto:fhali310:@yahoo.com

Al-Rafidain Engineering Vol.18 No.2 April 2010

1- Introduction
 With procedures for displaying output primitives and their attributes, a variety of pictures and
graphs can be created. In many applications, there is also a need for altering or manipulating
displays where design applications and facility layouts are created by arranging the orientations
and sizes of the component parts of a scene. On the other hand, animations are produced by
moving the camera or the objects in a scene along animation path. Changes in orientation, size,
and shape are accomplished with geometric transformations that alter the coordinates description
of images. The basic geometric transformations are translation, rotation and scaling [1,2]. The
challenge of producing realistic images of animation scenes is often broken into three sub
problems [3]:

1- Construct the scene.
2- Specify the initial state of the current transformation.
3- Perform the transformations.

2- Review
 In 1990 the researchers Hai Nang Lin and Henk J. Sips proposed a fast way CORDIC
implementation for calculations of a number of arithmetic basic function. The paper discusses the
speed that is limited by the carry propagation in the adders and the I/O throughput. It stated that
Speed can be improved by introducing redundancy in the calculation circuit and throughput by
doing I/O transfers while calculating [4].

 In 1993 the researchers Dwight Hill and Nam-Sung Woo discussed the utility of allowing
each block’s single large table (e.g., one 5-input, 32-bit table) to be reconfigured
into smaller tables (e.g., eight 4-bit tables). Results describing the efficiency of packing some
standard benchmark circuits into various configurations are presented and the cost/benefits are
discussed. The paper shows that a logic block containing four lookup tables, each of which is 8-
bit RAM, which is the best choice if only the area efficiency is considered. The researchers also
show that if the circuit speed is considered, a logic block containing two lookup tables, each of
which contains 16 bits of RAM, is the best choice [5].

 In 1999, John N. Lygouras described a new technique for lookup table implementation
using linear interpolation to achieve Memory Reduction in Look-Up Tables. This paper describes
a new hardware technique, providing high-resolution trigonometric functions, the sine and cosine
for an angle from a significantly reduced size lookup table (LUT). The method takes advantage
of the symmetries of these trigonometric functions around several axes and the fact that the
cosine function can be derived by shifting the sine function by /2 backward. This shifting is
achieved using a very fast hardware technique. A linear interpolation technique can be used if a
further reduction in memory is desired. The described system can be used for function generators,
robotic arm controllers, position control systems and others [6].

 In 2000 Kharrat M.W., Loulou M., Masmoudi N. and Kamoun L. introduced a paper for
an optimization of CORDIC algorithm implementation, which mainly offers a silicon area
occupation reduction and gives good precision in calculating trigonometric functions such as sine

Ali : Fpga Based Implementation Of Concatenation Matrix

17

and cosine function. To validate or test the new method, an implementation of angle
decomposition equation using FPGA technology is presented. This approach shows a
considerable surface reduction and good precision for calculation of a resolution less than 20 bits
[7].
 In 2001 the researchers Bernard Tiddeman and David Perrett described a new method for
creating visually realistic moving facial image sequences that retain an actor's personality
(individuality, expression and characteristic movements) while altering the facial appearance
along a certain specified facial dimension. The paper combines two existing technologies, facial
feature tracking and facial image transformation, to create the sequences. The paper also create
'virtual cartoons' by transforming image sequences into the style of famous artists [8].

In 2003 the researcher Ali M. A. Abbas introduced a Hardware Implementation of
Transformation of Rendering Algorithms. The proposed algorithms is first simulated in software
using C++ then transformed to hardware design, specified in VHDL and simulated in Model-
Technology environments assuming the delay times of a real FPGA device. The results
demonstrate that, these hardware schemes could provide appropriate pixel drawing time, enough
for real-time rendering [9].
 In 2005 the researchers Bensaali, F., Amira, A., Uzun I.S. and Ahmedsaid A. introduced a
paper investigating the suitability of Field Programmable Gate Array (FPGA) devices as a low
cost solution for implementing 3D affine transformations. A proposed solution based on
processing large matrix multiplication has been implemented, for large 3D models, on the
RC1000-PP Celoxica board based development platform using Handel-C, a C-like language
supporting parallelism, flexible data size and compilation of high-level programs directly into
FPGA hardware [10].
 In 2007 Faycal Bensaali , Abbes Amira and Reza Sotudeh described field-programmable
gate arrays in implementing floating-point arithmetic. In this paper a floating-point adder and
multiplier are presented. The proposed cores are used as basic components for the
implementation of a parallel floating-point matrix multiplier designed for 3D affine
transformations. The cores have been implemented on recent FPGA devices. The performance in
terms of area/speed of the proposed architectures has been assessed and has shown that they
require less area and can be run with a higher frequency when compared with existing systems
[11].

3- Geometric transformations
 Many graphics applications involve a sequence of geometric transformations. Fundamental to
all computer graphic systems is the ability to simulate both the movement and the manipulation
of images in a scene. These processes are described in terms of translation, scaling, and rotation.
They are applied to each individual vertex and repeated to all vertices to achieve the required
image transformation. These operations are described in a mathematical form which is suitable
for computer processing to achieve the image manipulation and motion [3,12,13]. Translation is
applied to an image by repositioning it along a straight-line path from one coordinates location to
another. A single vertex is translated by adding a translation distance; tx to x, and ty to y, to the
original coordinate position of the vertex V(x,y,) to move it to a new position V(xn,yn). Scaling
transformation alters the size of an image. The operation can be carried out by multiplying the
coordinate value V(x,y) of each vertex by scaling factors sx and sy to produce the transformation.

Al-Rafidain Engineering Vol.18 No.2 April 2010

The rotation is applied to a vertex by repositioning it along a circular path in the xy plane in a
clockwise or anti-clockwise direction.

4- Matrix representation
 The basic transformations can be expressed in a general matrix form as demonstrated in the
following articles:

4.1 Translation matrix

 x' 1 0 tx x
 y' = 0 1 ty y (1)
 1 0 0 1 1

4.2 Scaling matrix

 x' sx 0 0 x
 y' = 0 sy 0 y (2)
 1 0 0 1 1

4.3 Rotation matrix

 x' cos -sin 0 x
 y' = sin cos 0 y (3)
 1 0 0 1 1

Where is the angle of rotation (+ve for anticlockwise rotation)
 To produce a sequence of transformations with these equations, such as rotation followed by
scaling then translation for example, the coordinates must be calculated one step each time. First,
coordinate positions are rotated, then these rotated coordinates are scaled, and finally the
coordinates are translated. On the other hand, a more efficient approach would be to combine the
transformations so that the final coordinates positions are obtained directly from the initial
coordinates, thereby eliminating the calculation of intermediate coordinates values so that all
transformations can be expressed as a single transformation matrix as described in the following
articles.
4.4 Concatenation (rotation about origin , scaling , and translation)
 The outcome of multiplying the translation matrix by the scaling matrix and then
multiplying the result matrix by the rotation matrix is a single concatenation matrix which can be
used to compute a new vertex by a single operation rather than by three using equation (4).

 x' sx cos -sx sin tx x

 y' = sy sin sy cos ty y (4)

 1 0 0 1 1

Ali : Fpga Based Implementation Of Concatenation Matrix

19

4.5 Rotation about any rotation center (rx , ry)
 To generalize the rotation to be about any arbitrary center of rotation, three matrices can
be concatenated to a single one to accomplish that. The first matrix translates the vertex to be
rotated by tx = - Rx and ty = - Ry. The second matrix rotates the translated vertex about the
origin. And finally the third matrix translates it back by tx = Rx and ty = Ry. The three
matrices are multiplied and the results are presented as a single transformation matrix in equation
(5).

 x' cos -sin a x

 y' = sin cos b y (5)

 1 0 0 1 1

Where a = -Rx cos + Ry sin + Rx.
 b = -Rx sin - Ry cos + Ry.
4.6 Concatenation (arbitrary rotation, scaling, and translation)
 The previous example is repeated considering rotation about an arbitrary center of rotation
rather than about origin and the final results are presented in equation (6).

 x' sx cos -sx sin sx*a + tx x

 y' = sy sin sy cos sy*b + ty y (6)

 1 0 0 1 1

5- Trigonometric function evaluation
 The great challenge in geometric transformation is the sine function evaluation required for
rotation. There are several methods for computing this function (the sine or cosine). One of the
techniques is evaluating their series expansion by means of addition, multiplication and division
operations. The hardware implementation of sine function by their series is complicated due to
the accuracy requirement of considering a number of terms in the series expansion. There are
other techniques that are used currently in wide area of applications to evaluate trigonometric
functions, among these methods are the lookup table and the CORDID algorithm [14].

5.1 Look up table method

 High-speed approximations to the sine and cosine functions are often used in digital signal or
image processing and even in digital control. Computation using a look up table is an attractive
method because the required memory is available much denser than random logic in VLSI
realization. Multi megabit look up tables are already practical in some applications, even larger

Al-Rafidain Engineering Vol.18 No.2 April 2010

tables should become practical in the near future as memory density continues to improve. The
use of tables reduces the cost of hardware development (design, validation, and testing), provides
more flexibility for last-minute design, and reduces the number of different building blocks or
modules required for arithmetic system design [14].
 Tables stored in read only memory (especially if individual entries or blocks of data are
encoded in error-detecting or error- correcting codes) are more robust than combinational logic
circuit, thus leading to improved reliability. With read/write memory and reconfigurable
peripheral logic, the same building block can be used for evaluating many different functions by
simply reloading appropriate values in the table. This feature facilitates maintenance and repair.
There are more than one technique to implement the look up table, one of them is a direct look up
table. The direct look up table evaluation of trigonometric function requires the construction of a
2u * v table (u is the address and v is the output depth) that holds for each combination of input
values (needing a total of u bits) the desired v-bit result (the sine value). The u-bit string obtained
from concatenating the input values is then used as an address into the table with v-bit value read
out from the table directly forwarded to the output as shown in figure(1). Such arrangement is
quite flexible but some times it is required to reduces the table size especially in larger
representation of a trigonometric function in some application so an advantage of the symmetries
of these trigonometric functions around several axis can be considered. One solution is to reduce
the table size by storing in the table half wave or quarter wave instead of full wave of a sine or
cosine values and applying preprocessing steps to the input of the table and post processing to the
output value from the table. This approach is called indirect look up table as in figure (1) [15].

Figure(1): Direct and indirect look up table

Figure (2) shows the simulation waveforms for an example executed by the implemented
lookup table in a direct mode (because the current application doesn’t require high
representation) for 10-bit input (theta) and 10-bit output (sine & cosine), two bits for integer (1
bit for sign) and eight bits for fraction (fixed point representation). The output (sine or cosine) is
produced after one clock. Equation (7) defines the relationship between the integer input angle
theta and the actual radian angle [16].

Direct access Indirect access

Ali : Fpga Based Implementation Of Concatenation Matrix

21

 = theta (2 / theta _width) (7)
 Where theta _ width is (2 ˆ 10) = 1024

 Examining the waveforms, the first input of theta is zero so the output of sine value is zero
and the output of cosine is 256 (01.00000000) which is equivalent to 1. The second input is 128
(45 degrees) so the output of sine and cosine is 181 (00. 10110101) which is equivalent to
0.70703125.

Figure(2) Simulation example results using lookup table

Figure (2): shows the simulation waveforms

5.2 CORDIC algorithm

The Co-ordinate Rotation Digital Computer (C0.R.DI.C) algorithm is an iterative
procedure to evaluate various elementary functions. It was introduced in 1959 by Volder and it is
still interesting to many researchers due to its simple hardware structure. The CORDIC algorithm
is capable of evaluating many elementary trigonometric functions such as Sine and Cosine.
CORDIC is an iterative procedure for the calculation of the rotation of a two-dimensional vector,
in linear, circular or hyperbolic coordinate systems, using only add and shift operations [17]. Its
current applications are in the field of digital signal processing, image processing, filtering,
matrix algebra, etc. The simple form of CORDIC is based on the observation that if a unit length
vector with an end point position at (x , y)=(1 , 0) is rotated by an angle z, it’s new end point
position will be at (x' , y') = (cos z, sin z). Thus, cos z and sin z can be computed by finding the
coordinates of the new end point of the vector after rotation by z [14].
 The CORDIC algorithm consists of two operating modes, the rotation mode (suitable for
sine and cosine) and the vectoring mode, respectively. In the rotation mode, a vector (x , y) is
rotated by an angle to obtain the new vector (x', y'). In every micro rotation i, fixed angles of
the value arctan (2-i) which are stored in a ROM are subtracted or added from/to the angle
remainder i, so that the angle remainder approaches zero. In the vectoring mode, the length R
and the angle towards the x-axis of a vector (x , y) are computed (see figure 3). For this
purpose, the vector is rotated towards the x-axis so that the y-component approaches zero. The
sum of all rotation angles is equal to the value of , while the value of the x-component
corresponds to the length R of the vector (x, y). The mathematical relations for the adopted
rotation mode are given by equations (8), (9), and (10) [17].

Al-Rafidain Engineering Vol.18 No.2 April 2010

 Figure 3.The vectoring and rotation mode of the CORDIC algorithm

 x(i+1)=x(i) – di y(i) 2-i (8)
y(i+1)=y(i) – di x(i) 2-i (9)

 z(i+1)=z(i) – di tan -1 2-i (10)
 where: i = step index, di = -1 or +1

The computation of x(i+1) or y(i+1) requires an i-bit right shift and an add/subtract. If the
function (tan -1 2-i) is pre computed and stored in a table for different values of i, a single
add/subtract suffices to compute z(i+1). Each CORDIC iteration thus involves two shifts, a table
lookup, and three additions[14]. The hardware implementation for CORDIC arithmetic is shown
in figure (4). It requires three registers for x, y, and z, a lookup table to store the values of (tan -1

2-i) and two shifters to supply the terms 2-i x and 2-i y to the adder/subtract units. The di factor
(-1 or 1) is accommodated by selecting the (shifted) operand or its complement.

Figure(4) Hardware for CORDID method

 There are several techniques to implement the CORDIC algorithm, it can be implemented
using only one stage as shown in figure (4) and so the silicon area is reduced but each output
appears after n clock (where n is the input width) and this technique is called serial word. On the

R

y

x

Ali : Fpga Based Implementation Of Concatenation Matrix

23

other hand it can be implemented using n stages (repeating the hardware) and applying the
pipeline so the first output only appears after n clock and the other outputs each appears after a
single clock successively. This method is called parallel pipeline word. Figure (5) shows the
simulation waveforms for an example executed by the implemented serial word CORDIC where
the input width of theta is 10-bit, 3-bit for integer(1 bit for sign) and 7-bit for fraction to represent
the input range from to – , and 10-bit for output (sine & cosine), 2-bits for integer (1 bit for
sign) and 8-bits for fraction (fixed points representation) [16]. In figure 5 the first input is zero
and the output of cosine is 256 (01.00000000) which is equivalent to 1, and the output of sine is
1023 (11.11111111) which is equivalent to -0.00390625 (approximately zero). The second input
is 100 (000.1100100) which is equivalent to 0.781 (/4) and the output of sine is 180
(0010110100= 0.703) and the output of cosine is 182 (00.10110110 = 0.711).

Figure(5) CORDIC simulation results of a serial word example

Figure (6) shows the simulation waveforms for an example executed by the implemented
parallel pipeline word CORDIC. The first output appears after 10 clocks and the others each after
one clock.

Figure(6) CORDIC simulation results of a parallel pipeline word example

Al-Rafidain Engineering Vol.18 No.2 April 2010

6- Matrix Multiplication
 Matrix multiplication is required to compute new vertices from old vertices multiplied
each by the concatenation matrix The multiplication operation can be implemented using several
techniques, one of these techniques is array processors in a parallel mode where each processor
computes one element of the result matrix. Highly parallel computing structures become the
major application area for multimillion transistor chips. Such computing systems have structural
properties that are suitable for VLSI implementation. The matrix-vector product can be described
as shown below.
 C = A.B (11)

n
 Ci = aik bk for 1 i m , n = m = 3 (12)

K=1

 C1 a11 a12 a13 b1

 C2 = a21 a22 a23 b2 (13)

 C3 a31 a32 a33 b3

a11b1 a12b2 a13b3

c10

a21 a22 a23

0
c2

a31 a32 a33

0
c3

Figure (7) 2D Array processor for matrix multiplication

Figure (7) shows the designed unit for implementing matrix multiplication using
homogeneous 2D array processing elements.

Ali : Fpga Based Implementation Of Concatenation Matrix

25

7- Implementation
The Field Programmable Gate Array (FPGA) is a new approach to ASIC design that can

dramatically reduce manufacturing turn around time and cost. An FPGA consists of a regular
array of programmable logic blocks that can be interconnected by a programmable routing
network [16]. So using this technique the circuit hardware can be implemented. Figure (8) shows
a block diagram of the implemented unit. The inputs of the unit are the parameters of the
transformation matrix in addition to the input vertices, and the output is the vertices after
transformation. The matrix coefficients calculating unit is responsible for computing the elements
of the transformation matrix and loading the registers. Figure (9) shows the simulation
waveforms of an example executed by the unit for a concatenation matrix (for rotation, scaling,
and translation) defined by equation (6) and using a lookup table to implement the trigonometric
functions.

8- Test and results
 As shown in figure (9) the input representation is 16 bit, 8bit for integer and 8 bit for
fraction where Xin is set in the example to 02.00h, Yin=02.00h , sx=0f.00h, sy=0a.00h,
tx=05.00h, ty=0f.00h, Rx=00.00h, Ry=00.00h (Rx and Ry are zero for rotation about origin), and
for lookup table the input is theta=080h (128d = 45 degree). The first task of the matrix
coefficients calculation unit is addressing theta to the lookup table to determine the sine and
cosine value (0.b5=00.10110101) which is equivalent to 0.70703125. After that the calculation of
the coefficients begins, (sx * cos) is calculated as c00 which is equivalent to 10.60546875 and
(- sx * sin) is calculated as c01 to be (000a.9b00h) then truncated and converted to negative
(2's complement) as Cm01 (f5.65h) which is equivalent to -10.60546875. In the second row
where (sy * sin) is calculated as c10 (0007.1200h) then truncated as Cm10 (07.12) which is
equivalent to 7.078125. After that the new coordinates are computed by applying matrix
multiplication between the input matrix of vertices and transformation matrix (refer to equation
(14)).

 As shown in the simulation waveforms the new x coordinate is computed to be 0005.0000h
and the new y coordinate is 002b.4800h which is equivalent to 43.28125.

 xn 10.60546875 -10.60546875 5.00 2

 yn = 7.0703125 7.0703125 15 2 (14)

 1 0 0 1 1

Al-Rafidain Engineering Vol.18 No.2 April 2010

Figure(8) Implemented transformation unit

Figure (10) shows the simulation waveforms for a second example executed by the implemented
unit. In this example the concatenation matrix is executed to carry out rotation about a rotation
center (Rx, Ry) referring to equation (10). As shown in figure (10) the inputs are set to be
xin=05.00h, yin=05.00h, Rx=0a.00h, Ry=0a.00h, (sx=01.00h , sy=01.00h, tx=00.00h, ty=00.00h
(the last four parameters are set to be not effective in equation (6)), and for the lookup table
input theta=0aah (170d=60 degree). The sine and cosine values are computed first using theta
input to the lookup table to determine the sine value (0.ddh=00.11011101) which is equivalent to
0.86328125 and cosine value (0.81=00.10000001) which is equivalent to 0.50390625. After that
the matrix coefficientsare calculated, (cos) is the first element and (-sin) is the second element
which is calculated by converting 00.ddh to 2's complement (ff.23). Next a or (-Rx cos + Ry
sin + Rx) coefficient is calculated to be 000d.9800h which is equivalent to decimal value (
13.593751) then b (-Rx sin - Ry cos + Ry) coefficient is calculated to be fffc.5400h
(equivalent to -3.671875). The a and b coefficients are truncated and loaded in Cm02 and Cm12
respectively

matrix coefficients
calculation unit

trigonometric
 function
evaluation

 sx sy theta tx ty rx ry

theta

sin &cos

matrix multiplication
unit

transformation matrix
coefficients

registers

matrix input
registers

input
vertices

matrix output

registers

clk

clk

output
vertices

Ali : Fpga Based Implementation Of Concatenation Matrix

27

Figure(9) Simulation results of example 1

. Then the new coordinates are computed through multiplying the input matrix of vertices by the
transformation matrix as presented by equation (15). As shown by the simulation waveforms, the
new x coordinate is 000b.cc00h which is equivalent to 11.796875 and the new y coordinate is
0003.2a00h which is equivalent to 3.1640625.

 xn 0.50390625 -0.86328125 13.593751 5

 yn = 0.86328125 0.50390625 -3.671875 5 (15)

 1 0 0 1 1

Al-Rafidain Engineering Vol.18 No.2 April 2010

Figure(10) Simulation results of example 2

Table(1) Resources utilization using lookup table

RatioTotal ResourcesUtilized ResourcesType Resources (or Frequency)

2%4656113Number of Slices
1%9312116Number of Slices Flip flops

2%9312207Number of 4 input LUTs

82%232191Number of Bounded IOBs
5%201Number of Block RAMS
40%208Number of MULT18X18s
4%241Number of GCLKs

105.007MHZMaximum Operating Frequency

Ali : Fpga Based Implementation Of Concatenation Matrix

29

9- Conclusions and performance evaluation
One of the major concerns of real time graphics is the speed of execution. The execution

time of a graphic system is function of the complexity of a polygonal graphical object which can
be measured by the number of vertices used to represent it in data base and the time required to
transform and process them. In this paper a general method is presented to reduce five matrix
operations (one for translation, one for scaling, and three for rotation about an arbitrary center
of rotation) to a single operation each of them is a (3 x 3) matrix multiplication. So the total
transformation processing time can be reduced this way to only 20% of its value which is
significant for real time systems. This is true for any other sequence of the three mentioned
transformations if the concatenation matrix is derived for it following the same procedure.

The performance of the transformation unit is affected by three stages, the first is the sine
& cosine evaluation stage. This stage depends on the method used to compute the sine and cosine
values (Lookup Table or CORDIC Algorithm). The second stage is the transformation matrix
coefficients calculation with which the time of execution is constant (one clock). The final stage
is the matrix multiplication stage required to determine the output vertices. As confirmed by
figure (7), the designed matrix multiplication unit time of execution is constant too (one clock).

Table(2) Resources utilization using CORDIC algorithm

RatioTotal
Resources

Utilized
Resources

Type Resources (or Frequency)

5%4656232Number of Slices
3%9312279Number of Slices Flip flops
5%9312465Number of 4 input LUTs
82%232191Number of Bounded IOBs
0%200Number of Block RAMS
40%208Number of MULT18X18s
4%241Number of GCLKs

72.335 MHZMaximum Operating Frequency

Table (1) shows the utilization resources of Spartan3E kit used to implement the unit and the
maximum frequency using lookup table. Table (2) shows the utilization resources of spartan3E
kit used to implement the unit and the maximum frequency using CORDIC algorithm. With
lookup table the synthesized unit utilizes one block RAM and CORDIC implementation does not
utilize any block RAM but only silicon slices to implement the shift and add/sub operation. Of
course the utilized area for the lookup table is greater than that for CORDIC but on the other
hand the maximum operating frequency is more which justifies adopting it for real time
applications.
 In order to practically examine the transformation designed unit it is used to execute object
transformation with 1000 vertices entered to the implemented unit in the two modes, lookup table
and CORDIC. With the first technique the time elapsed is 9.54222 µ seconds which means that
the designed unit is able to transform (104.797 M) vertices per second. With the second
technique the time consumed is 13.97663 µ seconds so the designed unit is able to transform
(71.548 M) vertices per second. Such calculations show that the speed (105 M ,72 M) is reduced
slightly to (104 M , 71 M) because the transformation unit losses some available cycles due to

Al-Rafidain Engineering Vol.18 No.2 April 2010

the time required to perform some internal processes for computing the transformation matrix
coefficients before multiplying the input vertices by the transformation matrix to produce the
output vertices. So when the efficiency is evaluated using the first technique it is equal to 99.8%
and in the second one it is equal to 98.9%. However, the cost of gaining the mentioned speed is
an absolute overall error computed between (0) and (0.00281) for the two examples when
compared to calculating the new transformed vertices using a pocket calculator. The maximum
theoretical absolute error due to quantization of theta occurs for the sine at small values of theta
near zero (its derivative cosine is maximum) which is equal to the LSB value (0.006135 for 10
bit). Naturally, the error can further be reduced by increasing the resolution of numbers using
more bits for both theta and its sine (or cosine) since the relation between them is linear and the
sine of theta equals to theta (in radian) when theta approaches zero. However, reasonable small
errors are not significant to most computer graphics applications since round of errors are
inevitable and will always be unavoidable when generating pixels (at scan conversion stage) at
absolute address values from rounded x and rounded y transformed values.

References
 [1] Donald Hearn and M. Pauline, “Computer Graphic C Version” , Third edition, (1997),

Prentice Hall International , Inc.
[2] Edward Angel , “ Interactive Computer Graphic , A Top- Down Approach Using OpenGL

“,McGraw-Hill Inc, Third Edition 2003.
[3] Bruce A. Wallace , “ Merging and Transformation of Raster Images for Cartoon Animation ”

, Computer Graphics Vol.15, No. 3, August 1981.
[4] Hai Nang Lin, Henk J. Sips , “On-Line CORDIC Algorithms”, IEEE TRANSACTIONS ON

COMPUTERS, Vol. 39, No. 8, August 1990.
 [5] Dwight Hill , Nam-Sung Woo ,“The Benefits of Flexibility in Lookup Table-Based

FPGA’s”, IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF
INTEGRATED CIRCUITS AND SYSTEMS. Vo.12., No 2.,February 1993.

 [6] John N. Lygouras, “Memory Reduction in Look-Up Tables for Fast Symmetric Function
Generators”, IEEE TRANSACTIONS ON INSTRUMENTATION AND
MEASUREMENT, Vol. 48, No. 6, December 1999.

[7] Kharrat M.W., Loulou M., Masmoudi N., Kamoun L. , “A New Method to Implement
CORDIC Algorithm” , IEEE International Conference on Electronics, Circuits and
Systems , Vol. 2, Issue 1 , 2000, Pages:715 – 718.

[8] Bernard Tiddeman, David Perrett, “Moving Facial Image Transformations Based on Static
2D Prototypes”, in 9 Int. Conf. in Central Europe on Computer Graphics, Visualization and
Computer Vision 2001 (WSCG `2001).

[9] Ali M. A. Abbas, “ Transformation of Rendering Algorithms
for Hardware Implementation ” , Ph.D. Thesis , Department of Control Engineering and
Information Technology Faculty of Electrical Engineering and Informatics Budapest
University of Technology and Economics Budapest, 2003.

[10] Bensaali, F., Amira, A., Uzun I.S., Ahmedsaid A. ,“An FPGA implementation of 3D affine
transformations” , Proceedings of IEEE International Conference on Electronics, Circuits
and Systems Vol. 2, Issue 14, Dec. 2005, Pages: 715 – 718.

Ali : Fpga Based Implementation Of Concatenation Matrix

31

[11] Faycal Bensaali , Abbes Amira, Reza Sotudeh, “Floating-Point Matrix Product on FPGA “
IEEE/ACS International Conference on Computer Systems and Applications, 2007, Pages:
466-473.

[12] Zoran Popovic , AndrewWitkin ,“Physically Based Motion Transformation”, Computer
Science Department Carnegie Mellon University, SIGGRAPH 99, Los Angeles, August 8–
13, 1999.

[13] Robert C. Zeleznik , Kenneth P. Herndon , “ SKETCH: an interface for sketching 3D scenes
” , International Conference on Computer Graphics and Interactive Techniques
ACM SIGGRAPH 2006.

[14] Behrooz Parhami, “Computer Arithmetic: Algorithm and Hardware Designs” , New York
Oxford University Press 2000.

[15] Amir H. Farrahi, Majid Sarrafzadeh, “Complexity of the Lookup-Table Minimization
Problem for FPGA Technology Mapping”, IEEE TRANSACTIONS ON COMPUTER-
AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, Vol. 13, No. 1 I
,November 1994.

[16] "Spartan-3E, FPGA Family : Functional Description ", DS312-2(V3.5), March 16, 2007, ©
2006 Xilinx Inc.

[17] Ghariani, M.; Masmoudi, N.; Kharrat, M.W.; Kamoun, L. “Design and chip implementation
of modified CORDIC algorithm for Sine and Cosine functions application: PARK
transformation”, Proceedings of the Tenth International Conference on Microelectronics ,
Vol. 10, Issue 11 , 1998, Pages:241 – 244.

The work was carried out at the college of Engg. University of Mosul

